首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cyclic ketones react with (E)‐2‐nitroallylic acetates in the presence of catalytic pyrrolidine‐thiourea, which affords bicyclic skeletons with four or five stereocenters in one single reaction with up to 98 % ee in moderate to high yields. The cooperative effects of both enamine and the Brønsted acid are found to be crucial for the high reactivity and enantioselectivity of this cascade reaction, which is demonstrated by both theoretical calculation and experimental data.  相似文献   

4.
5.
1‐Aminodecalins were prepared from acyclic precursors by combining the powerful twofold diene‐transmissive Diels–Alder chemistry of [3]dendralenes with the simplicity of enamine formation. On mixing at ambient temperature, a simple dienal condenses with a primary or secondary amine to generate the enamine, a 1‐amino‐[3]dendralene in situ, and this participates as a double diene in a sequence of two Diels–Alder events with separate dienophiles. Overall, four C?C bonds and one C?N bond are formed. Mechanistic insights into these reactions are provided by means of density functional theory calculations.  相似文献   

6.
Herein, by using dispersion‐corrected density functional theory, we investigated the Diels–Alder chemistry of pristine and defective graphene. Three dienes were considered, namely 2,3‐dimethoxy‐1,3‐butadiene (DMBD), 9‐methylanthracene (9MA), and 9,10‐dimethylanthracene (910DMA). The dienophiles that were assayed were tetracyanoethylene (TCNE) and maleic anhydride (MA). When pristine graphene acted as the dienophile, we found that the cycloaddition products were 47–63 kcal mol?1 less stable than the reactants, thus making the reaction very difficult. The presence of Stone–Wales translocations, 585 double vacancies, or 555‐777 reconstructed double vacancies did not significantly improve the reactivity because the cycloaddition products were still located at higher energy than the reactants. However, for the addition of 910DMA to single vacancies, the product showed comparable stability to the separated reactants, whereas for unsaturated armchair edges the reaction was extremely favorable. With regards the reactions with dienophiles, for TCNE, the cycloaddition product was metastable. In the case of MA, we observed a reaction product that was less stable than the reactants by 50 kcal mol?1. For the reactions between graphene as a diene and the dienophiles, we found that the most‐promising defects were single vacancies and unsaturated armchair edges, because the other three defects were much‐less reactive. Thus, we conclude that the reactions with these above‐mentioned dienes may proceed on pristine or defective sheets with heating, despite being endergonic. The same statement also applies to the dienophile maleic anhydride. However, for TCNE, the reaction is only likely to occur onto single vacancies or unsaturated armchair edges. We conclude that the dienophile character of graphene is slightly stronger than its behavior as a diene.  相似文献   

7.
We report the synthesis of biomass‐derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low‐cost biomass. The scientific strategy relies on a Diels–Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta‐xylylenediamine (MXD). Transposition of this work to other furfural‐derived chemicals is also discussed and reveals that functionalized biomass‐derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route.  相似文献   

8.
9.
Site‐specific labeling of biomolecules is rapidly advancing due to the discovery of novel mutually orthogonal reactions. Quantum chemistry studies have also increased our understanding of their relative rates, although these have until now been based on highly simplified reactants. Here we examine a set of strain‐promoted click‐type cycloaddition reactions of n‐propyl azide, 3‐benzyl tetrazine and 3‐benzyl‐6‐methyl tetrazine with cyclooctenes/ynes, in which we aim to address all relevant structural details of the reactants. Our calculations have included the obligatory handles used to attach the label and biomolecule as these can critically influence the stereochemistry and electron demand of the reaction. We systematically computed orbital gaps, activation and distortion energies using density functional theory and determined experimental rates for validation. Our results challenge the current paradigm of the inverse electron demand for this class of reactions. We found that the ubiquitous handles, when next to the triple bond of cyclooctynes, can switch the Diels–Alder type ligations to normal electron demand, a class we term as SPINEDAC reactions. Electron donating substituents on tetrazine can enhance normal demand but also increase distortion penalties. The presence and isomeric configuration of handles thus determine the reaction speed and regioselectivity. Our findings can be directly utilized in engineering genuine cycloaddition click chemistries for biological labeling.  相似文献   

10.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc3N@Ih‐C80 and its D5h counterpart Sc3N@D5h‐C80, and the (bio)chemically relevant lutetium‐ and gadolinium‐based M3N@Ih/D5h‐C80 EMFs (M=Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels–Alder cycloaddition of s‐cis‐1,3‐butadiene on all the different bonds of the Ih‐C80 and D5h‐C80 cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc3N@C80. Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D 5h ‐b , which is the most similar to the unique [5,6] bond type in the icosahedral cage, I h ‐a , is the most reactive bond in M3N@D5h‐C80 regardless of M. Sc3N@C80 and Lu3N@C80 give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M=Gd, as previously found in similar metallofullerenes. Calculations also show that the D5h isomer is more reactive from the kinetic point of view than the Ih one in all cases which is in good agreement with experiments.  相似文献   

11.
The reaction of 4,6‐dinitrobenzofuroxan (DNBF) with 1‐trimethylsilyloxybuta‐1,3‐diene ( 8 ) is shown to afford a mixture of [2+4] diastereomeric cycloadducts ( 10 , 11 ) through stepwise addition–cyclization pathways. Zwitterionic intermediate σ‐adduct 9 , which is involved in the processes, has been successfully characterized by 1H and 13C NMR spectroscopy and UV/visible spectrophotometry in acetonitrile. A kinetic study has been carried out in this solvent that revealed that the rate of formation of 9 nicely fits the three‐parameter equation log k=s(E+N) developed by Mayr to describe the feasibility of nucleophile–electrophile combinations. This significantly adds to the NMR spectroscopic evidence that the overall cycloadditions take place through a stepwise mechanism. The reaction has also been studied in dichloromethane and toluene. In these less polar solvents, the stability of 9 is not sufficient to allow direct characterization by spectroscopic methods, but a kinetic investigation supports the view that stepwise processes are still operating. An informative comparison of our reaction with previous interactions firmly identified as prototype stepwise cycloadditions is made on the basis of the global electrophilicity index, ω, defined by Parr within the density functional theory, and highlighted by Domingo et al. as a powerful tool for understanding Diels–Alder reactions.  相似文献   

12.
13.
Selective C 60 -functionalizations that provide access to unusual multifunctional molecules are of interest in the construction of highly organized three-dimensional assemblies. The temporary “masking” of three of the most reactive sites on C60 by a bisdiene tether has allowed the facile and high-yielding formation of the fully differentiated trisadduct 1 and the interesting hexaadduct 2 .  相似文献   

14.
Breaking barriers : In agreement with experimental evidence, it was found by means of high‐level DFT calculations that the Cr(CO)3 metal fragment considerably reduces the reaction energy barrier—for both the concerted and stepwise reaction mechanisms (see graphic)—of the Diels–Alder reaction of butadiene on (5,5) carbon nanotubes.

  相似文献   


15.
16.
17.
Chiral N‐dienyl lactams are crucial building blocks for the synthesis of complex organic compounds. However, their generation is rather challenging. This paper reports on a highly efficient and diastereoselective multicomponent methodology utilizing chiral a mides, a ldehydes, and d ienophiles (AAD reaction). The three components readily react under in situ generation of chiral N‐dienyl lactams which undergo a subsequent Diels–Alder reaction. Different chiral amides have been employed in the standard protocol delivering yields up to 94 %, and selectivities up to 90 % de. Moreover, DFT calculations were performed to explain the obtained selectivities.  相似文献   

18.
CuI‐catalyzed enantioselective nitroso‐Diels–Alder reactions (NDA reactions) of 2‐nitrosopyridine with various dienes are presented. The [CuPF6(MeCN)4]/Walphos‐CF3 catalyst system is best suited to catalyze the NDA reaction of various dienes by using 2‐nitrosopyridine as a dienophile. In most of the cases studied, cycloadducts are obtained in quantitative yield with very good to excellent enantioselectivities. Based on DFT calculations, a model to explain the stereochemical outcome of the NDA reaction is presented. Finally, an efficient short synthesis of (?)‐peracetylated conduramine A‐1 by applying the enantioselective NDA reaction as a key step is described.  相似文献   

19.
Diels–Alder cycloadditions of butadiene and 1,3‐dipolar cycloadditions of azomethine ylide, fulminic acid, and the parent nitrone to polyacenes, fullerenes, and nanotubes have been investigated with density functional theory and ONIOM methods. Activation barriers obtained for cycloaddition reactions on planar and curved systems have been shown to be highly correlated to the energy needed to distort the reactants to the geometry of the transition state (TS).  相似文献   

20.
The Lewis acid(LA)‐catalyzed Diels–Alder reaction between isoprene and methyl acrylate was investigated quantum chemically using a combined density functional theory and coupled‐cluster theory approach. Computed activation energies systematically decrease as the strength of the LA increases along the series I2<SnCl4<TiCl4<ZnCl2<BF3<AlCl3. Emerging from our activation strain and Kohn–Sham molecular orbital bonding analysis was an unprecedented finding, namely that the LAs accelerate the Diels–Alder reaction by a diminished Pauli repulsion between the π‐electron systems of the diene and dienophile. Our results oppose the widely accepted view that LAs catalyze the Diels–Alder reaction by enhancing the donor–acceptor [HOMOdiene–LUMOdienophile] interaction and constitute a novel physical mechanism for this indispensable textbook organic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号