首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of cyclohexene and styrene with sodium periodate and tetra‐n‐butylammonium periodate (TBAP) catalyzed by MnT(3‐MePy)P(OAc), MnT(4‐SO3)PP(OAc) and MnTPP(OAc) has been studied in water, methanol, acetonitrile and dichloromethane as solvents. The results show significant dependence of the product distribution on the type of solvent and the electronic nature of the aryl substituents introduced at the porphyrin periphery. While the oxidation of cyclohexene and styrene in the presence of MnT(3‐MePy)P(OAc) and MnTPP(OAc) in water (also in methanol) gave the corresponding epoxides as nearly the sole product, performing the reactions in the presence of MnT(4‐SO3)PP(OAc) yielded the products of allylic oxidation, cyclohexene‐2‐ol and cyclohexene‐2‐one and acetophenone as the major products. In the case of styrene, performing the reaction in the presence of MnT(4‐SO3)PP(OAc), MnT(3‐MePy)P(OAc) and MnTPP(OAc) in acetonitrile gave a mixture of styrene oxide and acetophenone as the products. Under the same conditions, the oxidation of cyclohexene afforded cyclohexene oxide as approximately the exclusive product. Furthermore, the oxidation of olefins in dichloromethane gave the corresponding epoxide as the exclusive products. The product distributions observed in the protic and aprotic solvents were used to provide indirect evidence on the relative contribution and reactivity of high valent manganese oxo and periodato Mn(III) porphyrin species to the oxidation reactions.  相似文献   

2.
采用共缩聚法制备有机-无机杂化材料,以介孔SiO_2材料为载体,分别嫁接席夫碱配体和配位乙酰丙酮钼,得到Mo(VI)席夫碱修饰的介孔SiO_2(Mo-SB-Cl-SiO_2-0.5-1).所制备的材料采用XRD,SEM,N2吸附-脱附和TEM技术对其结构进行了表征.考察了Mo-SB-Cl-SiO_2-0.5-1催化液相烯烃环氧化性能,结果表明:Mo-SB-Cl-SiO_2-0.5-1催化剂对烯烃环氧化具有高的转化率和优良的催化活性.与后嫁接法制备的催化剂相比,Mo-SB-Cl-SiO_2-0.5-1催化剂催化活性得到明显提高,催化环己烯环氧化的转化率和选择性分别为85%和99%.在不同烯烃的研究中,环辛烯具有最高的转化率和选择性,分别为87%和99%.催化剂重复使用4次后,环己烯的转化率没有明显下降,选择性仍然高达98%,表明Mo-SB-Cl-SiO_2-0.5-1具有较好的催化稳定性.  相似文献   

3.
Copper(II) complex of a Schiff base ligand derived from pyrrolcarbaldehyde and o‐phenylenediamine (H2L) has been synthesized and encapsulated in Y‐zeolite matrix. The hybrid material has been characterized by elemental analysis, IR and UV‐Vis spectroscopic studies as well as X‐ray diffraction (XRD) pattern. The encapsulated copper(II) catalyst is an active catalyst for the oxidation of cyclooctene and cyclohexene using H2O2 as oxidant. Under the optimized reaction conditions 81% conversion of cyclohexene with 65% selectivity for 2‐cyclohexenone formation and 87% conversion of cyclooctene with 46% selectivity for epoxide formation were obtained.  相似文献   

4.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Although catalytic processes mediated by surface plasmon resonance (SPR) excitation have emerged as a new frontier in catalysis, the selectivity of these processes remains poorly understood. Here, the selectivity of the SPR‐mediated oxidation of p‐aminothiophenol (PATP) employing Au NPs as catalysts was controlled by the choice of catalysts (Au or TiO2‐Au NPs) and by the modulation of the charge transfer from UV‐excited TiO2 to Au. When Au NPs were employed as catalyst, the SPR‐mediated oxidation of PATP yielded p,p‐dimercaptobenzene (DMAB). When TiO2‐Au NPs were employed as catalysts under both UV illumination and SPR excitation, p‐nitrophenol (PNTP) was formed from PATP in a single step. Interestingly, PNTP molecules were further reduced to DMAB after the UV illumination was removed. Our data show that control over charge‐transfer processes may play an important role to tune activity, product formation, and selectivity in SPR‐mediated catalytic processes.  相似文献   

6.
The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron‐withdrawing and ‐donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1‐octene, and ethylbenzene in various solvent systems, namely, toluene, CH2Cl2, CH3CN, and H2O/CH3CN (1:4). With an increase in the concentration of the easy‐to‐oxidize substrate cyclohexene in the presence of [(TMP)MnCl] ( 1 a ) with electron‐donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn? OOC(O)R] species 2 a is the major active species. When the substrate was changed from the easy‐to‐oxidize one (cyclohexene) to difficult‐to‐oxidize ones (1‐octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F20TPP)Mn? OOC(O)R] species 2 b generated from the reaction of [(F20TPP)MnCl] ( 1 b ) with electron‐withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn? OOR] 2 a ) depending on the concentration of the easy‐to‐oxidize substrate cyclohexene in all aprotic solvent systems except for CH3CN, whereas MnV?O species is the major active oxidant in the protic solvent system. With difficult‐to‐oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1‐octene in toluene, indicating that a MnV?O intermediate generated from the heterolytic cleavage of 2 b becomes a major reactive species. We also studied the competitive epoxidations of cis‐2‐octene and trans‐2‐octene with two manganese(III) porphyrin complexes by meta‐chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis‐ to trans‐2‐octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further supporting the contention that the reactions of manganese porphyrin complexes with peracids generate multiple reactive oxidizing intermediates.  相似文献   

7.
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2RuIII(OH2)]CF3CO2 ( 1 ; Me3tacn=1,4,7‐trimethyl‐1,4,7‐triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80 % yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one‐mole scale, the oxidation of cyclohexene, cyclooctene, and 1‐octanol with 1 mol % of 1 produced adipic acid (124 g, 85 % yield), suberic acid (158 g, 91 % yield), and 1‐octanoic acid (129 g, 90 % yield), respectively. The oxidative C?C bond‐cleavage reaction proceeded through the formation of cis‐ and trans‐diol intermediates, which were further oxidized to carboxylic acids via C? C bond cleavage.  相似文献   

8.
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray-flame synthesis and applied in the liquid-phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state-of-the-art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first-order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex-2-ene-1-hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.  相似文献   

9.
The development of inexpensive and practical iron catalysts for the environmentally benign epoxidation of olefins with hydrogen peroxide as terminal oxidant is described. By systematic variation of ligands, metal sources, and reaction conditions, it was discovered that FeCl3?6H2O in combination with pyridine‐2,6‐dicarboxylic acid and different amines shows high reactivity and excellent selectivity towards the epoxidation of aromatic olefins and moderate reactivity towards that of aliphatic olefins.  相似文献   

10.
The oxovanadium(IV)‐salen ion catalyzed H2O2 oxidation of N,N‐dimethylaniline forms N‐oxide as the product of the reaction. The reaction follows Michaelis–Menten kinetics and the rate of the reaction is accelerated by electron donating groups present in the substrate as well as in the salen ligand. This peculiar substituent effect is accounted for in terms of rate determining bond formation between peroxo bond of the oxidant and the N‐atom of the substrate in the transition state. Trichloroacetic acid (TCA) shifts the λmax value of the oxidant to the red region and catalyzes reaction enormously. The cleavage of N? O bond by vanadium complex leads to moderate yield of the product. But the percentage yield of the product becomes excellent in the presence of TCA.  相似文献   

11.
《中国化学会会志》2018,65(4):435-444
An experimental design methodology was applied to optimize cyclohexene epoxidation with hydrogen peroxide in the presence of acid‐activated montmorillonite clay supported on 11‐molybdovanado‐phosphoric acid, with the Keggin structure H4[PVMo11O40] · 13H2O (PVMo) as catalyst. The statistical study of the process was achieved through a two‐level, full‐factorial experimental design with five process parameters. The significant input variables (key factors) that influenced the performance of cyclohexene oxidation are the catalyst weight, catalyst loading, temperature, H2O2 concentration, and the reaction time. The effect of the individual parameters and their interaction effects on the cyclohexene conversion, as well as the selectivity of cyclohexane‐1,2‐diol, was determined, and a statistical model of the process was developed. The process was optimized by considering the two responses simultaneously, which allows defining the optimal regions for the significant process variables. The optimal conditions were obtained for the catalyst weight of 0.05 g, temperature of 70°C, and reaction time of 9 h, with 20% PVMo as the active phase and hydrogen peroxide as oxidant.  相似文献   

12.
Product control of palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups can be achieved through modifying reaction conditions. When the oxidant, such as CuCl2/O2, benzoquinone/O2 or O2, was present in scCO2, aerobic oxidation of terminal olefins goes smoothly. With enough MeOH and sufficient oxygen, acetalization preponderated over cyclotrimerization, while with little MeOH as co-solvent in scCO2 or no MeOH in DMF and an appropriate pressure of O2, cyclotrimerization of terminal olefins became the dominated reaction. When oxygen is absent and triethylamine was added into the reaction system, palladium-catalyzed C-N bond formation occurs to produce β-amino acid derivatives as the sole product.  相似文献   

13.
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV(O)(CH3CN)]2+ ( 2 ; cyclam=1,4,8,11‐tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII]2+ with aqueous hydrogen peroxide (H2O2) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo‐ and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII]2+ and H2O2. In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high‐yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.  相似文献   

14.
Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research. As a kind of biomimetic catalyst, metalloporphyrins‐catalyzed aerobic oxidation of alcohols with aldehyde as hydrogen donator is gathering much attention. However, using olefins as another kind hydrogen donator for aerobic oxidation of alcohols has not been reported. In this study, a system comprising managenese porphyrin and cyclohexene for biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed. The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions. Based on the results obtained from experiments as well as in situ EPR (electron paramagnetic resonance) and UV‐vis spectroscopy, the role of cyclohexene was demonstrated.  相似文献   

15.
Recently, it was shown that μ‐oxo‐μ‐peroxodiiron(III) is converted to high‐spin μ‐oxodioxodiiron(IV) through O?O bond scission. Herein, the formation and high reactivity of the anti‐dioxo form of high‐spin μ‐oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic‐absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ‐oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluene<ethylbenzene≈cumene<trans‐β‐methylstyrene. The rate constants increased proportionally to the substrate concentration at low substrate concentration. At high substrate concentration, however, the rate constants converge to the same value regardless of the kind of substrate. This is explained by a two‐step mechanism in which anti‐μ‐oxodioxodiiron(IV) is formed by syn‐to‐anti transformation of the syn‐dioxo form and reacts with substrates as the oxidant. The anti‐dioxo form is 620 times more reactive in the C?H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8]toluene is 95 at ?30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2O2.  相似文献   

16.
Catalytic water oxidation at Ir (OH)+ ( Ir =IrCp*(Me2NHC), where Cp*=pentamethylcyclopentadienyl and Me2NHC=N,N′‐dimethylimidazolin‐2‐ylidene) can occur through various competing channels. A potential‐energy surface showing these various multichannel reaction pathways provides a picture of how their importance can be influenced by changes in the oxidant potential. In the most favourable calculated mechanism, water oxidation occurs via a pathway that includes four sequential oxidation steps, prior to formation of the O?O bond. The first three oxidation steps are exothermic upon treatment with cerium ammonium nitrate and lead to formation of Ir V(?O)(O . )+, which is calculated to be the most stabile species under these conditions, whereas the fourth oxidation step is the potential‐energy‐determining step. O?O bond formation takes place by coupling of the two oxo ligands along a direct pathway in the rate‐limiting step. Dissociation of dioxygen occurs in two sequential steps, regenerating the starting material Ir (OH)+. The calculated mechanism fits well with the experimentally observed rate law: v=kobs[ Ir ][oxidant]. The calculated effective barrier of 24.6 kcal mol?1 fits well with the observed turnover frequency of 0.88 s?1. Under strongly oxidative conditions, O?O bond formation after four sequential oxidation steps is the preferred pathway, whereas under milder conditions O?O bond formation after three sequential oxidation steps becomes competitive.  相似文献   

17.
An environmentally friendly and efficient process whereby FeCl3?6H2O/2,2,6,6‐tetramethylpiperidine N‐oxyl (TEMPO)‐catalyzed oxidation of alcohols to the corresponding aldehydes and ketones is accomplished in the presence of silica gel using molecular oxygen or air as the terminal oxidant. The electron‐deficient benzyl alcohol was smoothly oxidized to the corresponding aldehydes with up to 99% isolated yield. It was found that silica gel not only could enhance the catalytic reaction rate but also increase the selectivity for the product. The high performance of FeCl3?6H2O/TEMPO catalyst system in the presence of silica gel might be attributed to the surface silanol groups. UV–visible spectra analysis showed that the Fe (III)–TEMPO complex could serve as the active intermediate species in the present catalytic system. A plausible mechanism of the catalytic system is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Building on earlier results, a direct metal‐free α‐ arylation of substituted cyclic 1,3‐diones using ArI(O2CCF3)2 reagents has been developed; unlike other arylative approaches, the arylated products retain the iodine substituent ortho to the newly formed C?C bond. The mechanism is explored by using DFT calculations, which show a vanishingly small activation barrier for the C?C bond‐forming step. In fact, taking advantage of an efficient in situ hypervalent activation, the iodoarenes are shown to undergo a cross‐ dehydrogenative C?C coupling at the C?H ortho to the iodine. When Oxone is used as terminal oxidant, the process is found to benefit from a rapid initial formation of the hypervalent ArI(OR)2 species and the sulfate‐accelerated final coupling with a ketone. This method complements the ipso selectivity obtained in the metal‐catalyzed α‐arylation of carbonyl compounds.  相似文献   

19.
A [{RhCl(cod)}2]/CCl3COOH system was developed for the oxidative coupling of non‐chelate‐assisted arenes with olefins in the presence of catalytic amounts of Cu(OAc)2 ? H2O as a co‐oxidant and oxygen as the terminal oxidant. The acid was an indispensable component in this system and played a very important role in the coupling reaction. This catalytic system was applied to the direct oxidative coupling of a series of arenes and olefins and the corresponding products were afforded in high yields with special chemo‐ and regioselectivity. This reaction provides an atom‐efficient route to vinylarenes, which are widely used in various fine chemicals.  相似文献   

20.
A simple protocol that uses [OsIII(OH)(H2O)(L ‐N4Me2)](PF6)2 ( 1 ; L ‐N4Me2=N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis‐1,2‐dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron‐withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46–99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the OsV(O)(OH) species ( 2 ), which is formed via the hydroperoxide adduct, an OsIII(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号