首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global nonlinear gravito‐electrostatic eigen‐fluctuation behaviors in large‐scale non‐uniform complex astroclouds in quasi‐neutral hydrodynamic equilibrium are methodologically analyzed. Its composition includes warm lighter electrons, ions; and massive bi‐polar multi‐dust grains (inertial) with partial ionization sourced, via plasma‐contact electrification, in the cloud plasma background. The multi‐fluidic viscous drag effects are conjointly encompassed. The naturalistic equilibrium inhomogeneities, gradient forces and nonlinear convective dynamics are considered without any recourse to the Jeans swindle against the traditional perspective. An inho‐mogeneous multiscale analytical method is meticulously applied to derive a new conjugated non‐integrable coupled (via zeroth‐order factors) pair of variable‐coefficient inhomogeneous Korteweg de‐Vries Burger (i ‐KdVB) equations containing unique form of non‐uniform linear self‐consistent gradient‐driven sinks. A numerical illustrative scheme is procedurally constructed to examine the canonical fluctuations. It is seen that the eigenspectrum coevolves as electrostatic rarefactive damped oscillatory shock‐like structures and self‐gravitational compressive damped oscillatory shock‐like patterns . The irregular damping nature is attributable to the i ‐KdVB sinks. The aperiodicity in the hybrid rapid small downstream wavetrains is speculated to be deep‐rooted in the quasi‐linear gravito‐electrostatic interplay. The phase‐evolutionary dynamics grow as atypical non‐chaotic fixed‐point attractors . We, finally, indicate tentative astronomical applications relevant in large‐scale cosmic structure formation aboard facts and faults. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The nonlinear dynamics of a circularly polarized laser pulse propagating in magnetized plasma contains hot nonextensive q ‐distributed electrons and ions is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude electromagnetic wave is obtained using the relativistic two‐fluids model. Some nonlinear phenomena include modulational instability, self‐focusing, soliton formation, and longitudinal and transversal evolutions of laser pulse in nonextensive plasma medium are investigated. Results show that the nonextensivity of particles can substantially change the nonlinearity of medium. The external magnetic field enhances the modulation instability growth rate of right‐hand polarization wave but for the left‐hand polarization the growth rate decreases. The spot size of the laser pulse is strongly affected by the plasma nonextensivity. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

4.
Starting from a hydrodynamic model to describe the positive column of a glow discharge in oxygen, we investigate the stability of the homogeneous state. Near the critical points of the instability curve the wave dynamics are approximated by an amplitude equation of the Ginzburg‐Landau type with complex coefficients and an additional integral term. The nonlocal coupling term describes the influence of the external circuit on the plasma properties. The complex coefficients are calculated for selected values of the plasma parameters. For sufficiently large values of the external resistor a subcritical Hopf ‐bifurcation is found. This is in agreement with the observation that in oxygen discharges a strong hysteresis occurs at the transition from the H ‐mode to the T ‐mode. Moreover, a numerical approach is used to study the hysteresis as a transition phenomenon (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This paper addresses a construction of new q‐Hermite polynomials with a full characterization of their main properties and corresponding raising and lowering operator algebra. The three‐term recursive relation as well as the second‐order differential equation obeyed by these new polynomials are explicitly derived. Relevant operator actions, including the eigenvalue problem of the deformed oscillator and the self‐adjointness of the related position and momentum operators, are investigated and analyzed. The associated coherent states are constructed and discussed with an explicit resolution of the induced moment problem. The phase collapse in a q‐deformed boson system is studied.  相似文献   

6.
For calcite (CaCO3), one of the pioneer crystals in nonlinear optics, new results of stimulated Raman scattering (SRS) spectroscopy are presented. Among them are the discovery of a new SRS‐promoting vibration mode with ωSRS2 ≈︁ 282 cm‐1 and its participation, together with the main SRS mode ωSRS1 ≈︁ 1086.5 cm‐1, in cross‐cascaded (χ(3) ↔ χ(3)) nonlinear‐lasing generation, as well as the observation of efficient self‐upconversion via cascaded parametric four‐wave processes of one‐micron Stokes and anti‐Stokes χ(3)‐lasing into the UV‐region of third harmonic generation. The investigations show that calcite is able to generate a χ(3)‐lasing comb of more than two octaves bandwidth. The article also gives a brief review on the discovery and study of the SRS‐effect in natural crystals (minerals), which have expanded our ability to study the photon‐phonon nonlinear‐laser interactions in crystalline materials. A short summary of information about χ(3)‐lasing properties of the triangular planar structure units in SRS‐active crystals is included.  相似文献   

7.
B3‐LYP/cc‐pVDZ calculations of the gas‐phase structure and vibrational spectra of the isolated molecule cyclo(L ‐Ser‐L ‐Ser), a cyclic di‐amino acid peptide (CDAP), were carried out by assuming C2 symmetry. It is predicted that the minimum‐energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L ‐seryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol−1) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X‐ray crystallographic structure of cyclo(L ‐Ser‐L ‐Ser), shows that the DKP ring displays a near‐planar conformation, with both the two L ‐seryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier‐transform infrared (FT‐IR) spectra of solid state and aqueous solution samples of cyclo(L ‐Ser‐L ‐Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid‐state samples show characteristic amide I vibrations which are split (Raman: 1661 and 1687 cm−1, IR: 1666 and 1680 cm−1), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ∼30 cm−1, which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm−1. The occurrence of this cis amide II mode at a wavenumber above 1500 cm−1 concurs with results of previously examined CDAP molecules with low molecular weight substituents on the Cα atoms, and is also indicative of a relatively unstrained DKP ring. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Experimental Raman and FT‐IR spectra of solid‐state non‐deuterated and N‐deuterated samples of cyclo(L ‐Met‐L ‐Met) are reported and discussed. The Raman and FT‐IR results show characteristic amide I vibrations (Raman: 1649 cm−1, infrared: 1675 cm−1) for molecules exhibiting a cis amide conformation. A Raman band, assigned to the cis amide II vibrational mode, is observed at ∼1493 cm−1 but no IR band is observed in this region. Cyclo(L ‐Met‐L ‐Met) crystallises in the triclinic space group P1 with one molecule per unit cell. The overall shape of the diketopiperazine (DKP) ring displays a (slightly distorted) boat conformation. The crystal packing employs two strong hydrogen bonds, which traverse the entire crystal via translational repeats. B3‐LYP/cc‐pVDZ calculations of the structure of the molecule predict a boat conformation for the DKP ring, in agreement with the experimentally determined X‐ray structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The nonlinear features of dust acoustic waves (DAWs) propagating in a multicomponent dusty plasma with negative dust grains, Maxwellian ions, and double spectral electron distribution (DSED) are investigated. A Korteweg de Vries Burgers equation (KdVB) is derived in the presence of the polarization force using the reductive perturbation technique (RPT). In the absence of the dissipation effect, the bifurcation analysis is introduced and various types of solutions are obtained. One of these solutions is the rarefactive solitary wave solution. Additionally, in the presence of the dissipation effects, the tanh method is employed to find out the solution of KdVB equation. Both of the monotonic and the oscillatory shock structures are numerically investigated. It is found that the correlation between dissipation and dispersion terms participates strongly in creating the dust acoustic shock wave. The limit of the DSED to the Maxwell distribution is examined. The distortional effects in the profile of the shock wave that result by increasing the values of the flatness parameter, r, and the tail parameter, q, are investigated. In addition, it has been shown that the proportional increase in the value of the polarization parameter R enhances in both of the strength of the monotonic shock wave and the amplitude of the oscillatory shock wave. The effectiveness of non-Maxwellian distributions, like DSED, in several of plasma situations is discussed as well.  相似文献   

10.
Coupling electron‐hole (e‐ h+) and electron‐ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid‐gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~420–1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n ‐type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain hfe as large as 10, this phototransistor is capable of modulat‐ing and extinguishing the collector plasma with emitter‐base bias voltages <1 V. Electrons injected into the base when the emitter‐base junction is forward‐biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion‐enhanced field emission in which ions arriving at the base‐collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base‐collector interface, the PBJT's emitter‐base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor‐plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
《光谱学快报》2013,46(5-6):461-475
The 1H‐ and 13C‐NMR spectra of 1‐β‐d‐glucopyranosyl‐1,2,3‐triazole‐4,5‐dimethyl carboxylate, 1‐β‐d‐glucopyranosyl‐1,2,3‐triazole‐4,5‐dicarboxamide, ‐dialkylcarboxamide‐N‐nucleosides 4–18, and 6‐amino‐4H‐1‐(1‐β‐d‐glucopyranosyl)‐8‐hydroxy‐1,2,3‐triazolo[4,5‐e][1,3]‐diazepin‐4‐one 19 had been studied. Resonance signals and anomeric configurations were assigned by homo‐ and heteronuclear two dimensional methods (DQF‐COSY, HSQC, HMBC, HMQC, ROESY).  相似文献   

12.
1H NMR (nuclear magnetic resonance) and high‐field ESR (electron spin resonance) measurements were carried out for self‐doped organic conductors in the ammonium tetrathiapentalene carboxylate (TTPCOO)2[(NH41+)1–x(NH30)x ] system. While the pristine TTPCOOH molecule is closed‐shell, self‐doped carriers are generated by substitution of the carboxyl proton by (NH30) and (NH41+), which can be regarded as a charge reservoir. The π‐extended system TTPCOO has a uniaxial g ‐tensor, indicating a 2D isotropic structure such as a herring‐bone‐like or parallel cross donor arrangement. The NMR‐relaxation rate indicated the Korringa relation in the temperature dependence, and the ESR linewidth followed the Elliot mechanism. Both of these observations provide supporting evidence for a stable metallic state. In this paper, we introduce self‐doped organic conductors as a branch of materials design, and emphasize that advanced magnetic resonance measurements are powerful tools for developing functional materials. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Successful X‐ray photon correlation spectroscopy studies often require that signals be optimized while minimizing power density in the sample to decrease radiation damage and, at free‐electron laser sources, thermal impact. This suggests exploration of scattering outside the Fraunhofer far‐field diffraction limit d2R, where d is the incident beam size, λ is the photon wavelength and R is the sample‐to‐detector distance. Here it is shown that, in an intermediate regime d2/λ > Rdξ/λ, where ξ is the structural correlation length in the material, the ensemble averages of the scattered intensity and of the structure factor are equal. Similarly, in the regime d2/λ > Rdξ(τ)/λ, where ξ(τ) is a time‐dependent dynamics length scale of interest, the ensemble‐averaged correlation functions g1(τ) and g2(τ) of the scattered electric field are also equal to their values in the far‐field limit. This broadens the parameter space for X‐ray photon correlation spectroscopy experiments, but detectors with smaller pixel size and variable focusing are required to more fully exploit the potential for such studies.  相似文献   

14.
Present research work focuses on study of self‐focusing and self‐trapping of Hermite cosh Gaussian (HchG) laser beams in rippled density plasma by considering relativistic non‐linearity. The coupled non‐linear differential equations for the beam width parameters (for modes m = 0, 1, and 2) were derived by employing higher‐order correction in comparison to paraxial ray theory by expanding dielectric function and eikonal up to r4 terms. It is observed that the inclusion of higher‐order terms significantly influence the off‐axial properties for m ≥ 1 mode indices. Furthermore, the effect of parameters including beam intensity, ripple factor, depth of density modulation, and decentred parameter on self‐focusing and self‐trapping is analysed and discussed both analytically and numerically.  相似文献   

15.
The emission intensities and the signal‐to‐background ratios (SBRs) of copper emission lines in the wavelength range 200–360 nm were observed from a medium‐voltage spark discharge plasma when argon or helium was employed as the surrounding gas. The observed copper spectra comprised Cu(I) lines having excitation energy of 3.8–9.3 eV, and Cu(II) lines assigned to three different transitions: 3d 84p–3d 84s transition (excitation energy of 8.2–9.2 eV), 3d 85s–3d 84p transition (13.4–13.6 eV), and the 3d 84d–3d 84p transition (14.2–14.8 eV). The Cu(I) lines have much smaller intensities in the helium plasma compared with the argon plasma, whereas the Cu(II) lines have similar intensities between both plasmas. The SBRs of some ionic copper lines are larger in the helium plasma compared with the argon plasma. Therefore, when an ionic line has to be measured in the analytical applications, the helium plasma should be recommended.  相似文献   

16.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The design, construction and commissioning of a beamline and spectrometer for inelastic soft X‐ray scattering at high resolution in a highly efficient system are presented. Based on the energy‐compensation principle of grating dispersion, the design of the monochromator–spectrometer system greatly enhances the efficiency of measurement of inelastic soft X‐rays scattering. Comprising two bendable gratings, the set‐up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin‐flip, dd and charge‐transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set‐up in terms of full width at half‐maximum is 108 meV at an incident photon energy tuned about the Ni L3‐edge.  相似文献   

18.
We report an ab initio simulation study of the ultrafast broad bandwidth ultraviolet stimulated resonance Raman spectra (SRRS) of l ‐tyrosine, l ‐tryptophan, and trans‐l ‐tryptophan‐l ‐tyrosine (WY) dipeptide. Two‐pulse one‐dimensional SRRS and three‐pulse two‐dimensional SRRS that reveal inter‐residue and intra‐residue vibrational correlations are simulated using electronically resonant or pre‐resonant pulse configurations that select the Raman signal and discriminate against excited state pathways. Multimode effects are incorporated via the cumulant expansion. The two‐dimensional SRRS technique is more sensitive to residue couplings than spontaneous Raman. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The Raman and surface‐enhanced Raman scattering (SERS) spectra of l ‐proline (Pro) and trans‐4‐hydroxy‐ l ‐proline (Hyp) were recorded. SERS spectra were obtained on colloidal Ag prepared by reduction with hydroxylamine. Allowing sufficient time for Pro and Hyp to adjust in the colloidal solution resulted fundamentally in obtaining unique and reproducible SERS spectra. Hyp stabilizes on the surface more rapidly than Pro. The spectral analysis indicates that Pro interacts with the Ag surface through the carboxylate group. The interaction of Hyp with the metal surface occurs through the amino, methylene and carboxylate moieties of the molecule. The spectroscopic results are supported by quantum chemical calculations, performed using extended Hückel theory (EHT) of the title compounds interacting with an Ag cluster model. The assignment of the Raman bands was supported by a normal coordinate analysis performed through Becke, three‐parameter, Lee–Yang–Parr/6‐311 G* + calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Using Boltzmann–Vlasov kinetic model, a currentless ion acoustic instability driven by stream of solar wind plasma is studied in a non‐thermal distributed electrons and ions. The non‐thermal distribution considered here is the generalized distribution which has low energetic flat‐top and velocity power law tail at higher energies. The instability threshold is found to be affected and depends upon the spectral indices r and q . It is found that the growth rate increases with the decrease in the value of r and increase with q . Moreover, such kinetic instability has also been discussed for three species electron–ion–dust plasma using the generalized (r, q) distribution function. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust and excites electrostatic instabilities. The dispersion properties and growth rates for ion‐acoustic and dust‐acoustic mode are calculated analytically and plotted for different values of the spectral indices r and q .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号