首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
赵春宾  袁荞龙  黄葆同 《化学学报》2007,65(21):2443-2448
在含表面活性剂的水相体系中, 用一系列水杨醛亚胺镍配合物催化乙烯聚合, 得到了高分子量低支化度聚乙烯. 研究表明水杨醛亚胺镍配合物中苯环上取代基的电子效应和空间位阻对乙烯聚合活性和聚合物的分子量有所影响. 提高配合物酚氧环上取代基的吸电子性, 聚合活性相应增加, 但聚乙烯的分子量降低; 而增加苯胺环上取代基的空间位阻, 聚合活性和聚乙烯的分子量均增加. 粘度法测得由水相聚合得到的聚乙烯的分子量在104~105范围内. DSC测得该聚乙烯的结晶度在50%~70%之间, 熔点在115~137 ℃范围内. GPC分析表明用环辛二烯合镍[Ni(COD)2]助催化乙烯, 聚乙烯的分子量分布随酚氧环上取代基电负性增加而从双峰到单峰变化, 动态流变学研究进一步说明了聚乙烯分子量及其分布的变化.  相似文献   

2.
Herein, we report the formation of a highly reactive nickel–oxygen species that has been trapped following reaction of a NiII precursor bearing a macrocyclic bis(amidate) ligand with meta‐chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C?H bonds, C?C bonds, and sulfides) than previously reported well‐defined nickel–oxygen species. Remarkably, this species is formed by heterolytic O?O bond cleavage of a Ni–HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a NiIII–oxyl compound.  相似文献   

3.
The simultaneous chain‐growth and step‐growth polymerization of a monomer is of great interest and importance because it can produce unique macromolecules which are difficult to prepare by other means. However, such a transformation is usually difficult to achieve in one polymerization system because chain‐growth polymerization and step‐growth polymerization proceed by different reaction mechanisms. Reported here is the simultaneous chain‐growth and step‐growth polymerization of para‐ and meta‐methoxystyrenes catalyzed by half‐sandwich rare‐earth alkyl complexes, and the step‐growth polymerization proceeds by the C?H polyaddition of anisyl units to vinyl groups. This unprecedented transformation affords a new family of macromolecules containing unique alternating anisole‐ethylene sequences. In contrast to para‐ and meta‐methoxystyrenes, ortho‐methoxystyrene exclusively undergo syndiospecific, living chain‐growth polymerization by continuous C=C bond insertion to give perfect syndiotactic poly(ortho‐methoxystyrene) with high molecular weight and narrow polydispersity (rrrr >99 %, Mn up to 280 kg mol?1, Mw/Mn <1.10).  相似文献   

4.
DFT calculations have been used to elucidate the chain termination mechanisms for neutral nickel ethylene oligo‐ and polymerization catalysts and to rationalize the kind of oligomers and polymers produced by each catalyst. The catalysts studied are the (κ2O,O)‐coordinated (1,1,1,5,5,5‐hexafluoro‐2,4‐acetylacetonato)nickel catalyst I , the (κ2P,O)‐coordinated SHOP‐type nickel catalyst II , the (κ2N,O)‐coordinated anilinotropone and salicylaldiminato nickel catalysts III and IV , respectively, and the (κ2P,N)‐coordinated phosphinosulfonamide nickel catalyst V . Numerous termination pathways involving β‐H elimination and β‐H transfer steps have been investigated, and the most probable routes identified. Despite the complexity and multitude of the possible termination pathways, the information most critical to chain termination is contained in only few transition states. In addition, by consideration of the propagation pathway, we have been able to estimate chain lengths and discriminate between oligo‐ and polymerization catalysts. In agreement with experiment, we found the Gibbs free energy difference between the overall barrier for the most facile propagation and termination pathways to be close to 0 kcal mol?1 for the ethylene oligomerization catalysts I and V , whereas values of at least 7 kcal mol?1 in favor of propagation were determined for the polymerization catalysts III and IV . Because of the shared intermediates between the termination and branching pathways, we have been able to identify the preferred cis/trans regiochemistry of β‐H elimination and show that a pronounced difference in σ donation of the two bridgehead atoms of the bidentate ligand can suppress hydride formation and thus branching. The degree of rationalization obtained here from a handful of key intermediates and transition states is promising for the use of computational methods in the screening and prediction of new catalysts of the title class.  相似文献   

5.
A series of novel α‐diamine nickel complexes, (ArNH‐C(Me)‐(Me)C‐NHAr)NiBr2, 1 : Ar=2,6‐diisopropylphenyl, 2 : Ar=2,6‐dimethylphenyl, 3 : Ar=phenyl), have been synthesized and characterized. X‐ray crystallographic analysis showed that the coordination geometry of the α‐diamine nickel complexes is markedly different from conventional α‐diimine nickel complexes, and that the chelate ring (N‐C‐C‐N‐Ni) of the α‐diamine nickel complex is significantly distorted. The α‐diamine nickel catalysts also display different steric effects on ethylene polymerization in comparison to the α‐diimine nickel catalyst. Increasing the steric hindrance of the α‐diamine ligand by substitution of the o‐methyl groups with o‐isopropyl groups leads to decreased polymerization activity and molecular weight; however, catalyst thermal stability is significantly enhanced. Living polymerizations of ethylene can be successfully achieved using 1 /Et2AlCl at 35 °C or 2 /Et2AlCl at 0 °C. The bulky α‐diamine nickel catalyst 1 with isopropyl substituents can additionally be used to control the branching topology of the obtained polyethylene at the same level of branching density by tuning the reaction temperature and ethylene pressure.  相似文献   

6.
7.
We report the first generation and characterization of elusive Breslow intermediates derived from aromatic N‐heterocyclic carbenes (NHCs), namely benzimidazolin‐2‐ylidenes (NMR, X‐ray analysis) and thiazolin‐2‐ylidenes (NMR). In the former case, the diamino enols were generated by reaction of the free N,N‐bis(2,6‐diisopropylphenyl)‐ and N,N‐bis(mesityl)‐substituted benzimidazolin‐2‐ylidenes with aldehydes while the dimer of 3,4,5‐trimethylthiazolin‐2‐ylidene served as the starting material in the latter case. The unambiguous NMR identification of the first thiazolin‐2‐ylidene‐based Breslow intermediate rests on double 13C labeling of both the NHC and the aldehyde component. The acyl anion reactivity was confirmed by benzoin formation with excess aldehyde.  相似文献   

8.
合成并表征了含RCOO-基团的单核(Ni1~Ni2)及双核(Ni3)镍配合物[(2,6-R2-C6H3)—N=C(H)—(3-Ph-5-PhCOO-2-O-C6H2)-κ2-N,O]Ni(CH3)(pyridine)](R=iPr;3,5-tBu2C6H3),并用于催化乙烯均聚和共聚反应。 作为单组分催化剂,这些配合物可以有效地催化乙烯聚合得到中等相对分子质量的支化聚乙烯(PE)。 供电性的PhCOO—基团促进了催化剂Ni1的引发,从而在低温下比Ni0活性更高。 引入大位阻的2,6-(3,5-二叔丁基苯基)苯胺基团,催化剂Ni2在5×105 Pa下的活性高达1.8×106 g PE mol-1·Ni-1·h-1,是活性最高的水杨醛亚胺中性镍催化剂之一。 与相应的单核催化剂相比,双核催化剂Ni3对三苯基膦具有更好的耐受性。 这些催化剂可催化乙烯与1,5-己二烯、1,7-辛二烯、6-溴-1-己烯或10-十一烯酸甲酯的共聚合,制备功能化聚乙烯。  相似文献   

9.
汪伟华  金国新 《无机化学学报》2004,20(10):1223-1227
本文合成了两个新的催化剂,苯基-三苯基膦-[N-萘基-3-甲基水杨醛亚胺]合镍(4a)与苯基-三苯基膦-[N-萘基-5-硝基水杨醛亚胺]合镍(4b),并研究了它们催化降冰片烯的聚合。发现两种催化剂在助催化剂甲基铝氧烷(MAO)存在下都具有良好的催化降冰片烯聚合物活性。在50 ℃时,催化剂4b表现出最高催化活性。  相似文献   

10.
11.
The trifluoromethanide anion is the postulated key intermediate in nucleophilic trifluoromethylation reactions. However, for more than six decades, the trifluoromethanide anion was widely believed to exist only as a short‐lived transient species in the condensed phase. It has now been prepared in bulk for the first time in THF solution. The trifluoromethanide anion with the [K(18‐crown‐6)]+ cation was unequivocally characterized by low‐temperature 19F and 13C NMR spectroscopy. Its intermediacy in nucleophilic trifluoromethylation reactions was directly evident by its reaction chemistry with various electrophilic substrates. Variable‐temperature NMR spectroscopy, along with quantum mechanical calculations, support the persistence of the trifluoromethanide anion.  相似文献   

12.
13.
14.
A series of sterically demanding α‐diimine ligands bearing electron‐donating and electron‐withdrawing substituents were synthesized by an improved synthetic procedure in high yield. Subsequently, the corresponding Pd complexes were prepared and isolated by column chromatography. These Pd complexes demonstrated unique properties in ethylene polymerization, including high thermal stability and high activity, thus generating polyethylene with a high molecular weight and very low branching density. Similar properties were observed for ethylene/methyl acrylate copolymerization. Because of the high molecular weight and low branching density, the generated polyethylene and ethylene/methyl acrylate copolymer were semicrystalline solids. The (co)polymers had unique microstructures originating from the unique slow‐chain‐walking activity of these Pd complexes.  相似文献   

15.
16.
Several new heteroleptic SnII complexes supported by amino‐ether phenolate ligands [Sn{LOn}(Nu)] (LO1=2‐[(1,4,7,10‐tetraoxa‐13‐azacyclopentadecan‐13‐yl)methyl]‐4,6‐di‐tert‐butylphenolate, Nu=NMe2 ( 1 ), N(SiMe3)2 ( 3 ), OSiPh3 ( 6 ); LO2=2,4‐di‐tert‐butyl‐6‐(morpholinomethyl)phenolate, Nu=N(SiMe3)2 ( 7 ), OSiPh3 ( 8 )) and the homoleptic Sn{LO1}2 ( 2 ) have been synthesized. The alkoxy derivatives [Sn{LO1}(OR)] (OR=OiPr ( 4 ), (S)‐OCH(CH3)CO2iPr ( 5 )), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO1}]+[H2N{B(C6F5)3}2]? ( 9 ), a rare well‐defined, solvent‐free tin cation, was prepared in high yield. The X‐ray crystal structures of compounds 3 , 6 , and 8 were elucidated, and compounds 3 , 6 , 8 , and 9 were further characterized by 119Sn Mössbauer spectroscopy. In the presence of iPrOH, compounds 1 – 5 , 7 , and 9 catalyzed the well‐controlled, immortal ring‐opening polymerization (iROP) of L ‐lactide (L ‐LA) with high activities (ca. 150–550 molL?LA molSn?1 h?1) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L ‐LA)s were obtained in all cases. The activities of the heteroleptic pre‐catalysts 1 , 3 , and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre‐catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA‐PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on 1H and 119Sn{1H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4 , compound [Sn(OiPr)2]n 10 , and free {LO1}H in a dynamic temperature‐dependent and concentration‐dependent equilibrium. Upon further addition of L ‐LA, two active species were detected, [Sn{LO1}(OPLLA)] ( 12 ) and [Sn(OPLLA)2] ( 14 ), which were also in fast equilibrium. Based on assignment of the 119Sn{1H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic ( 1 , 3 , 7 ) or homoleptic ( 2 ) pre‐catalysts, both types of pre‐catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1 – 5 could not operate according to an activated‐monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L ‐LA and TMC promoted by industrially relevant homoleptic or heteroleptic SnII species.  相似文献   

17.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


18.
α‐Diimine nickel complexes bearing bulky ortho‐sec‐phenethyl groups (bis{[N,N(4methyl2,6di‐sec‐phenethylphenyl)imino]1,2dimethylethane}dibromonickel ( 1 ), bis{[N,N(4,6dimethyl2‐sec‐phenethylphenyl)imino]1,2dimethylethane}dibromonickel ( 2 ), bis{[N,N(4methyl2‐sec‐phenethylphenyl)imino]1,2dimethylethane}dibromonickel ( 3 )) and {bis[N,N(2,4,6trimethylphenyl)imino]1,2dimethylethane}dibromidonickel ( 4 ) are used as a precatalyst for the polymerization of trans‐4octene upon activation with modified methylaluminoxane. These catalysts conduct chainwalking polymerization of trans‐4octene to give polymers possessing propyl and butyl branches with high molecular weight and narrow molecular weight distribution. The branching structure depends on the nickel complex as well as the polymerization temperature, and the ratio of propyl branch was increased with increasing the bulkiness of the ligand and decreasing the polymerization temperature. Consequently, the most bulky 1 among the complexes used is found to polymerize trans‐4octene with high 1,5regioselectivity at −20 °C to give poly(1propylpentan1,5diyl).

  相似文献   


19.
A series of neutral nickel complexes featuring N‐fluorinated phenyl salicylaldiminato chelate ligands was synthesized, and the novel molecular structure of complex C14 was further confirmed by X‐ray crystallographic analysis. The neutral nickel complexes showed high activity up to 9.96×105 g oligomers/(mol Ni·h) and high selectivity of C6 in catalyzing ethylene oligomerization using methylaluminoxane (MAO) as cocatalyst. It was observed that the strong electron‐withdrawing effect of the fluorinated salicylaldiminato ligand was able to significantly increase the catalytic activity for oligomerization of ethylene. In addition, the influence of reaction parameters such as Al/Ni molar ratio, reaction temperature, a variety of cocatalyst and ethylene pressure on catalytic activity was investigated.  相似文献   

20.
Over the past few years, the utilization of late transition metal-based soluble complexes as styrene polymerization catalysts has received considerable attention1. Various systems have been explored. For example, cationic h3-allylnickel complexes alone2 or modified by P (III) ligands3 as well as a few other systems (e. g., cationic h3-benzylic nickel complexes4) are active homogeneous catalysts for the low molecular weight polymerization of styrene by simple cationic mechanism2,3,4. Neut…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号