首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N‐heterocyclic carbenes are studied. [Ag4(L1)4](PF6)4, [Pd(L1)Cl](PF6), [Pt(L1)Cl](PF6) (L1=3‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)‐1‐(pyrimidin‐2‐yl)‐1H‐imidazolylidene), [Pd2(L2)2Cl2](PF6)2, and [Pd(L2)2](PF6)2 (L2=1‐butyl‐3‐((1‐(pyridin‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X‐ray crystallography. The silver complex [Ag4(L1)4](PF6)4 consists of a Ag4 zigzag chain. The complexes [Pd(L1)Cl](PF6) and [Pt(L1)Cl](PF6), containing a nonsymmetrical NCN ′ pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd2(L2)2Cl2](PF6)2 consists of two palladium centers with CN2Cl coordination mode, whereas the palladium in [Pd(L2)2](PF6)2 is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki–Miyaura cross coupling reactions of aryl bromides and 1,1‐dibromo‐1‐alkenes in neat water under an air atmosphere.  相似文献   

2.
3.
4.
An elegant general synthesis route for the preparation of two coordinate palladium(0) and platinum(0) complexes was developed by reacting commercially available tetrakis(triphenylphosphine)palladium/platinum with π‐accepting cyclic alkyl(amino) carbenes (cAACs). The complexes are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The palladium complexes exhibit sharp color changes (crystallochromism) from dark maroon to bright green if the C‐Pd‐C bond angle is sharpened by approximately 6°, which is chemically feasible by elimination of one lattice THF solvent molecule. The analogous dark orange‐colored platinum complexes are more rigid and thus do not show this phenomenon. Additionally, [(cAAC)2Pd/Pt] complexes can be quasi‐reversibly oxidized to their corresponding [(cAAC)2Pd/Pt]+ cations, as evidenced by cyclic voltammetry measurements. The bonding and stability are studied by theoretical calculations.  相似文献   

5.
Two classes of pincer‐type PtII complexes containing tridentate N‐donor ligands ( 1 – 8 ) or C‐deprotonated N^C^N ligands derived from 1,3‐di(2‐pyridyl)benzene ( 10 – 13 ) and auxiliary N‐heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)]2+ complexes 1 – 5 display green phosphorescence in CH2Cl2 (Φ: 1.1–5.3 %; τ: 0.3–1.0 μs) at room temperature. Moderate‐to‐intense emissions are observed for 1 – 7 in glassy solutions at 77 K and for 1 – 6 in the solid state. The [Pt(N^C^N)(NHC)]+ complexes 10 – 13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3. The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N‐donor ligand of 1 undergoes displacement reaction with CN? in protic solvents. Similar displacement of the N^C^N ligand by CN? has been observed for 10 , leading to a luminescence “switch‐off” response. The water‐soluble 7 containing anthracenyl‐functionalized NHC ligand acts as a light “switch‐on” sensor for the detection of CN? ion with high selectivity. The in vitro cytotoxicity of the PtII complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM , whereas 1 – 4 and 6 – 8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.  相似文献   

6.
7.
Imidazolium salts, [RS(O)? CH2(C3H3N2)Mes]Cl (R=Me ( L1 a ), Ph ( L1 b )); Mes=mesityl), make convenient carbene precursors. Palladation of L1 a affords the monodentate dinuclear complex, [(PdCl2{MeS(O)CH2(C3H2N2)Mes})2] ( 2 a ), which is converted into trans‐[PdCl2(NHC)2] (trans‐ 4 a ; N‐heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans‐ 4 a can isomerize into cis‐ 4 a (anti) at reflux in acetonitrile. Abstraction of chlorides from 4 a or 4 b leads to the formation of a new dication: trans‐[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me ( 5 a ), Ph ( 5 b )). The X‐ray structure of 5 a provides evidence that the two bidentate SO? NHC ligands at palladium(II) are in square‐planar geometry. Two sulfoxides are sulfur‐ and oxygen‐bound, and constitute five‐ and six‐membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5 a or 5 b spontaneously transform into cis‐[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether–NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers.  相似文献   

8.
Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N‐heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N′‐nBu2NHC)](CF3SO3) ( Pd1 d , HC^N^N=6‐phenyl‐2,2′‐bipyridine, N,N′‐nBu2NHC=N,N′‐di‐n‐butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50=0.09–0.5 μm ) but is less cytotoxic toward a normal human fibroblast cell line (CCD‐19Lu, IC50=11.8 μm ). In vivo anticancer studies revealed that Pd1 d significantly inhibited tumor growth in a nude mice model. Proteomics data and in vitro biochemical assays reveal that Pd1 d exerts anticancer effects, including inhibition of an epidermal growth factor receptor pathway, induction of mitochondrial dysfunction, and antiangiogenic activity to endothelial cells.  相似文献   

9.
We have synthesized cis and trans N‐heterocyclic carbene (NHC) platinum(II) complexes bearing σ‐alkynyl ancillary ligands, namely [Pt(dbim)2(C?CR)2] [DBIM=N,N′‐didodecylbenzimidazoline‐2‐ylidene; R=C6H4F ( 4 ), C6H5 ( 5 ), C6H2(OMe)3 ( 6 ), C4H3S ( 7 ), and C6H4C?CC6H5 ( 8 )] and [Pt(ibim)2(C?CC6H5)2] ( 9 ) (ibim=N,N′‐diisopropylbenzimidazoline‐2‐ylidene), starting from [Pt(cod)(C?CR)2] (COD=cyclooctadiene) and 2 equivalents of [dbimH]Br ([ibimH]Br for complexes 9 ) in the presence of tBuOK and THF. Mechanistic investigations aimed at uncovering the cis to trans isomerization reaction have been performed on the representative cis complex 5 a [Pt(dbim)2(C?CC6H5)2] and revealed the isomerization to progress smoothly in good yield when 5 a was treated with catalytic amounts of [Pt(cod)(C?CR)2] at 75 °C in THF or when 5 a was heated at 200 °C in the solid state under an inert atmosphere. Detailed examination of the reactions points to the possible involvement, in a catalytic fashion, of a solvent‐stabilized PtII dialkyne complex in the former case and a Pt0 NHC complex in the latter case, for the transformation of the cis isomer to the corresponding trans complex. Thermal stability and the isomerization process in the solid state have been further investigated on the basis of TGA and DSC measurements. X‐ray diffraction studies have been carried out to confirm the solid‐state structures of 4 b , 5 a , 5 b , and 9 b . All of the synthesized dialkyne complexes 4 – 9 exhibit phosphorescence in solution, in the solid state at room temperature (RT), and also in frozen solvent glasses at 77 K. The emission wavelengths and quantum yields have been found to be highly tunable as a function of the alkynyl ligand. In particular, the trans isomer of complex 9 in a spin‐coated film (10 wt % in poly(methyl methacrylate), PMMA) exhibits a high phosphorescence quantum yield of 80 %, which is the highest reported for PtII‐based deep‐blue emitters. Experimental observations and time‐dependent density functional theory (TD‐DFT) calculations are strongly indicative of the emission being mainly governed by metal‐perturbed interligand (3IL) charge transfer.  相似文献   

10.
Blocking the C2 position of an imidazole‐derived classical N‐heterocyclic carbene (NHC) with an aryl group is an essential strategy to establish a route to mesoionic carbenes (MICs), which coordinate to the metal via the C4 (or C5) carbon atom. An efficient catalytic route to MIC precursors by direct arylation of an NHC is reported. Treatment of 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr) with an aryl iodide (RC6H4I) in the presence of 0.5 mol % of [Pd2(dba)3] (dba=dibenzylideneacetone) precatalyst affords the C2‐arylated imidazolium salts {IPr(C6H4R)}I (R=H, 4‐Me, 2‐Me, 4‐OMe, 4‐COOMe) in excellent (up to 92 %) yields. Treatment of {IPr(C6H5)}I with CuI and KN(SiMe3)2 exclusively affords the MIC–copper complex [(IPrPh)CuI].  相似文献   

11.
12.
PdII‐catalyzed C(sp3)?H arylation of saturated heterocycles with a wide range of aryl iodides is enabled by an N‐heterocyclic carbene (NHC) ligand. A C(sp3)?H insertion step by the PdII/NHC complex in the absence of ArI is demonstrated experimentally for the first time. Experimental data suggests that the previously established NHC‐mediated Pd0/PdII catalytic manifold does not operate in this reaction. This transformation provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.  相似文献   

13.
The abnormally bound, anionic NHC–borane complex [Ru(IDipp‐BF3)(p‐cymene)Cl]2 ( 4 ; IDipp‐BF3=1,3‐(2,6‐iPr2C6H3)2‐2‐BF3(C3HN2)‐4‐yl) was synthesized by transmetalation from Li[(IDipp‐BF3)2Ag]. Addition of donors gave species of the form [Ru(IDipp‐BF3)(p‐cymene)(L)Cl], whereas halide abstraction with Ag(Et2O)[B(C6F5)4] gave C?H activation of the methine position of the IDipp?BF3 ligand.  相似文献   

14.
We report here the synthesis and catalytic evaluation in DNA alkylation of a series of water‐soluble copper complexes bearing N‐heterocyclic carbene (NHC) ligands. The NHC ligands were chosen to cover the gamut of commonly used scaffold variations, but in many cases, copper complexes could not be obtained or were unstable. Nevertheless, we identified several complexes that were both stable and catalytically active. Our studies provide guidance and starting scaffolds for any researchers interested in aqueous copper(I) catalysis. A key practical aspect of our findings is that azide‐bearing copper‐NHC complexes are excellent substrates for the azide‐alkyne cycloaddition, which allows late‐stage tailoring of the copper complexes.  相似文献   

15.
16.
The imidazolium salt 3‐methyl‐1‐(naphthalen‐2‐yl)‐1H‐imidazolium iodide ( 2 ) has been treated with silver(I) oxide and [{Pt(μ‐Cl)(η3‐2‐Me‐C3H4)}2] (η3‐2‐Me‐C3H43‐2‐methylallyl) to give the intermediate N‐heterocyclic carbene complex [PtCl(η3‐2‐Me‐C3H4)(H$\widehat{CC}$ *‐κC*)] ( 3 ) (H$\widehat{CC}$ *‐κC*=3‐methyl‐1‐(naphthalen‐2‐yl)‐1H‐imidazol‐2‐ylidene). Compound 3 undergoes regiospecific cyclometallation at the naphthyl ring of the NHC ligand to give the five‐membered platinacycle compound [{Pt(μ‐Cl)($\widehat{CC}$ *)}2] ( 4 ). Chlorine abstraction from 4 with β‐diketonate Tl derivatives rendered the corresponding neutral compounds [Pt($\widehat{CC}$ *)(L‐O,O′)] {L=acac (HL=acetylacetone) 5 , phacac (HL=1,3‐diphenyl‐1,3‐propanedione) 6 , hfacac (HL=hexafluoroacetylacetone) 7 }. All of the compounds ( 3 – 7 ) were fully characterized by standard spectroscopic and analytical methods. X‐ray diffraction studies were performed on 5 – 7 , revealing short Pt?Pt and π–π interactions in the solid‐state structure. The influence of the R‐substituents of the β‐diketonate ligand on the photophysical properties and the use of the most efficient emitter, 5 , as phosphor converter has also been studied.  相似文献   

17.
The N‐heterocyclic carbene‐stabilized chromium(II) alkyl, aryl, and alkynyl complexes (IPM)2CrR2 [R = Me ( 2 ), Ph ( 3 ), C≡CPh ( 3 ); IPM = 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene] were prepared by metathesis reactions of (IPM)2CrCl2 ( 1 ) with the corresponding organolithium reagents. Further reaction of 3 with an organic azide, 1‐azidoadamantane, yielded an organonitridochromium(V) compound (IPM)2Ph2Cr≡N ( 5 ). Compounds 2 – 5 are fully characterized by 1H NMR and IR spectroscopy, X‐ray crystallography as well as by elemental analysis. The structural analysis shows that the metal atom adopts a nearly square‐planar arrangement in the respective 2 , 3 , and 4 and a square‐pyramidal one in 5 . The reaction of 3 with the organic azide to 5 appears a novel way to the organonitridochromium compound.  相似文献   

18.
A straightforward and scalable eight‐step synthesis of new N‐heterocyclic carbenes (NHCs) has been developed from inexpensive and readily available 2‐nitro‐m‐xylene. This process allows for the preparation of a novel class of NHCs coined ITent (“Tent” for “tentacular”) of which the well‐known IMes (N,N′‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene), IPr (N,N′‐bis(2,6‐di(2‐propyl)phenyl)imidazol‐2‐ylidene) and IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) NHCs are the simplest and already known congeners. The synthetic route was successfully used for the preparation of three members of the ITent family: IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene), IHept (N,N′‐bis(2,6‐di(4‐heptyl)phenyl)imidazol‐2‐ylidene) and INon (N,N′‐bis(2,6‐di(5‐nonyl)phenyl)imidazol‐2‐ylidene). The electronic and steric properties of each NHC were studied through the preparation of both nickel and palladium complexes. Finally the effect of these new ITent ligands in Pd‐catalyzed Suzuki–Miyaura and Buchwald–Hartwig cross‐couplings was investigated.  相似文献   

19.
A low‐cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1‐aryl‐3‐cycloalkyl‐imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N‐heterocyclic carbene (U2‐NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号