首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Nanoparticles of the spin‐crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin‐crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as‐synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin‐crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   

2.
A new complex of [Rh(PA)2Cl2]Cl·H2O (where PA = phenyl‐pyridin‐2‐ylmethylene‐amine) has been synthesized and characterized. The complex shows high intensity bands in the UV region, and these are assigned to spin‐allowed π‐π* transitions. The medium‐intensity absorption band profile in the lower energy region can be explained by convolution of spin‐allowed CT and d‐d* transitions. Emission spectrum at low temperature (77 K) of the complex in EtOH/MeOH (4:1 v/v) has also been investigated. It shows a broad, symmetric, and structureless red emission with micro second life time and hence is assigned as d‐d* phosphorescence. Voltammetric data have also been obtained for the complex. There were three reduction peaks observed for the complex. The first peak, including two reduction steps with elimination of two chlorides, is consistent with ECEC reaction.  相似文献   

3.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

4.
The electronic structure of the iron(II) spin crossover complex [Fe(H2bpz)2(phen)] deposited as an ultrathin film on Au(111) is determined by means of UV‐photoelectron spectroscopy (UPS) in the high‐spin and in the low‐spin state. This also allows monitoring the thermal as well as photoinduced spin transition in this system. Moreover, the complex is excited to the metastable high‐spin state by irradiation with vacuum‐UV light. Relaxation rates after photoexcitation are determined as a function of temperature. They exhibit a transition from thermally activated to tunneling behavior and are two orders of magnitude higher than in the bulk material.  相似文献   

5.
New methods are proposed for the synthesis of spin‐crossover nano‐ and micro‐objects. Several nano‐objects that are based upon the spin‐crossover complex [Fe(hptrz)3](OTs)2 (hptrz=4‐heptyl‐1,2,4‐triazole, Ts=para‐toluenesulfonyl) were prepared in homogeneous media. The use of various reagents (Triton X‐100, PVP, TOPO, and PEGs of different molecular weights) as stabilizing agents yielded materials of different size (6 nm–2 μm) and morphology (nanorods, nanoplates, small spherical particles, and nano‐ and micro‐crystals). In particular, when Triton X‐100 was used, a variation in the morphology from nanorods to nanoplates was observed by changing the nature of the solvent. Interestingly, the preparation of the nanorods and nanoplates was always accompanied by the formation of small spherical particles. Alternatively, when PEG was used, 200–400 nm crystals of the complex were obtained. In addition, a very promising polymer‐free synthetic method is discussed that was based on the preparation of relatively stable FeII–triazole oligomers in CHCl3. Their specific treatment led to micro‐crystals, small nanoparticles, or gels. The size and morphology of all of these objects were characterized by TEM and by dynamic light scattering (DLS) where possible. Their spin‐crossover behavior was studied by optical and magnetic measurements. The spin‐transition features for large particles (>100 nm) were very similar to that of the bulk material, that is, close to room temperature with a hysteresis width of up to 8 K. The effects of the matrix and/or size‐reduction led to modification of the transition temperature and an abruptness of the spin transition for oligomeric solutions and small nanoparticles of 6 nm in size.  相似文献   

6.
Three new hetero‐bischelated rhodium (III) complexes of cis‐[Rh(PA)(L)Cl2]Cl (where PA = phenylpyridin‐2‐ylmethylene‐amine; L = 2,2′‐bipyridine, 2,2′‐dipyridylamine and 1,10‐phenanthroline) have been successfully prepared and characterized. Each complex shows high intensity bands in the UV region, and these are assigned to spin‐allowed π‐π* transitions. The medium‐intensity absorption band profile in the lower energy region can be explained by convolution of spin‐allowed CT and d‐d* transitions. The emission spectra at low temperature (77 K) of these complexes in EtOH/MeOH (4:1 v/v) are virtually identical. They all exhibit a broad, symmetric, and structureless red emission with a microsecond lifetime and hence are assigned as the d‐d* phosphorescence.  相似文献   

7.
A novel pyrazolate‐bridged ligand providing two {PNN} pincer‐type compartments has been synthesized. Its diiron(II) complex LFe2(OTf)3(CH3CN) ( 1 ; Tf=triflate) features, in solid state, two bridging triflate ligands, with a terminal triflate and a MeCN ligand completing the octahedral coordination spheres of the two high‐spin metal ions. In MeCN solution, 1 is shown to undergo a sequential, reversible, and complete spin transition to the low‐spin state upon cooling. Detailed UV/Vis and 19F NMR spectroscopic studies as well as magnetic measurements have unraveled that spin state switching correlates with a rapid multistep triflate/MeCN ligand exchange equilibrium. The spin transition temperature can be continuously tuned by varying the triflate concentration in solution.  相似文献   

8.
The title iron(II) complex, [Fe(CN)2(C15H23N3O2)]·H2O, is of interest to the spin‐crossover community because of its unusual temperature‐dependent magnetic behaviour as well as its relatively high relaxation temperature for the light‐induced spin‐crossover phenomenon. Structural modifications are strongly suspected to cause the unusual thermal spin‐crossover features. Recently, the high‐spin crystal structure has been reported but with an inadequate space group. In the present paper, the crystal structure is corrected by a new investigation, and some consequences for the structure–property relationships of this complex are discussed. The FeII ion is seven‐coordinate and lies on a twofold axis.  相似文献   

9.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

10.
The generation of iron(V) nitride complexes, which are targets of biomimetic chemistry, is reported. Temperature‐dependent ion spectroscopy shows that this reaction is governed by the spin‐state population of their iron(III) azide precursors and can be tuned by temperature. The complex [(MePy2TACN)Fe(N3)]2+ (MePy2TACN=N ‐methyl‐N ,N ‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) exists as a mixture of sextet and doublet spin states at 300 K, whereas only the doublet state is populated at 3 K. Photofragmentation of the sextet state complex leads to the reduction of the iron center. The doublet state complex photodissociates to the desired iron(V) nitride complex. To generalize these findings, we show results for complexes with cyclam‐based ligands.  相似文献   

11.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

12.
Reaction of O2 with a high‐spin mononuclear iron(II) complex supported by a five‐azole donor set yields the corresponding mononuclear non‐heme iron(III)–superoxo species, which was characterized by UV/Vis spectroscopy and resonance Raman spectroscopy. 1H NMR analysis reveals diamagnetic nature of the superoxo complex arising from antiferromagnetic coupling between the spins on the low‐spin iron(III) and superoxide. This superoxo species reacts with H‐atom donating reagents to give a low‐spin iron(III)–hydroperoxo species showing characteristic UV/Vis, resonance Raman, and EPR spectra.  相似文献   

13.
Co‐crystallization of a cyanide‐bridged tetranuclear complex [Co2Fe2] with 4‐cyanophenol (CP) gave a hydrogen bonding donor–acceptor system, [Co2Fe2(bpy*)4(CN)6(tp*)2](PF6)2⋅2 CP⋅8 BN ( 1 ). 1 exhibited a three‐step phase transition between HT, IM1, IM2, and LT phases upon temperature variation. Variable temperature magnetic measurements and structural analyses revealed that the three‐step spin transition is caused by electron‐transfer‐coupled spin transitions (ETCSTs) accompanied with alteration of the hydrogen bonding interactions.  相似文献   

14.
Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation–hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.27 m2 g?1), large pore volume (0.57 cm3 g?1), uniform pore size (5.11 nm), and a wide absorption band between λ=300 and 550 nm. TiO2 nanocrystals are anchored to the carbon dot through Ti?O?N and Ti?O?C bonds, as revealed by X‐ray photoelectron spectroscopy. Moreover, the nitrogen doping of TiO2 is also verified by the formation of the Ti?N bond. This composite shows excellent adsorption capabilities for 2,4‐dichlorophenol and acid orange 7, with an electron‐deficient aromatic ring, through electron donor–acceptor interactions between the carbon dot and organic compounds instead of the hydrophobic effect, as analyzed by the contact angle analysis. The composite can be photocatalytically recycled through visible‐light irradiation after adsorption. The narrowed band gap, as a result of nitrogen doping, and the photosensitization effect of carbon dots are revealed to be coresponsible for the visible‐light activity of TiO2. The adsorption capacity does not suffer any clear losses after being recycled three times.  相似文献   

15.
A high‐purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3NH3PbI3?DMF, is introduced as an effective precursor material for fabricating high‐quality solution‐processed perovskite layers. Spin‐coated films of the solvent‐intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low‐speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power‐conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2, eight‐cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell).  相似文献   

16.
A highly‐ordered 3D covalent fullerene framework is presented with a structure based on octahedrally functionalized fullerene building blocks in which every fullerene is separated from the next by six functional groups and whose mesoporosity is controlled by cooperative self‐assembly with a liquid‐crystalline block copolymer. The new fullerene‐framework material was obtained in the form of supported films by spin coating the synthesis solution directly on glass or silicon substrates, followed by a heat treatment. The fullerene building blocks coassemble with a liquid‐crystalline block copolymer to produce a highly ordered covalent fullerene framework with orthorhombic Fmmm symmetry, accessible 7.5 nm pores, and high surface area, as revealed by gas adsorption, NMR spectroscopy, small‐angle X‐ray scattering (SAXS), and TEM. We also note that the 3D covalent fullerene framework exhibits a dielectric constant significantly lower than that of the nonporous precursor material.  相似文献   

17.
We report on a bistable MEMS device actuated by spin‐crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3)2] (tz=1,2,4‐triazol‐1‐yl) molecular spin‐crossover complex. Switching from the low‐spin to the high‐spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high‐spin state as well as by the drop in the quality factor around the spin transition.  相似文献   

18.
《化学:亚洲杂志》2017,12(12):1314-1325
Bifunctional SBA‐1 mesoporous silica nanoparticles (MSNs) with carboxylic acid and amino groups (denoted as CNS‐10‐10) have been successfully synthesized, characterized, and employed as adsorbents for dye removal. Adsorbent CNS‐10‐10 shows high affinity towards cationic and anionic dyes in a wide pH range, and exhibits selective dye removal of a two‐dye mixture system of cationic methylene blue and anionic eosin Y. By changing the pH of the medium, the selectivity of the adsorption behavior can be easily modulated. For comparison purposes, the counterparts, that is, pure silica SBA‐1 MSNs (CS‐0) and those with either carboxylic acid or amino functional groups (denoted as CS‐10 and NS‐10, respectively) were also prepared to evaluate their dye‐adsorption behaviors. As revealed by the zeta‐potential measurements, the electrostatic interaction between the adsorbent surface and the dye molecule plays an important role in the adsorption mechanism. Adsorbent CNS‐10‐10 can be easily regenerated and reused, and maintains its adsorption efficiency up to 80 % after four cycles.  相似文献   

19.
The stable tetrathiafulvalene (TTF)‐linked 6‐oxophenalenoxyl neutral radical exhibits a spin‐center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2‐trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin‐center transfer. Temperature‐dependent cyclic voltammetry of the neutral radical using a novel low‐temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin‐center transfer are lowered by the hydrogen‐bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen‐bonding effect is a key factor for the occurrence of the spin‐center transfer of TTF‐linked 6‐oxophenalenoxyl.  相似文献   

20.
The reaction of Fe(NCS)3 prepared in situ in MeOH with 5‐X‐SalEen ligands (5‐X‐SalEen=condensation product of 5‐substituted salicylaldehyde and N‐ethylethylenediamine) provided three Fe(III) complexes, [Fe(5‐X‐SalEen)2]NCS; X=Me ( 1 ), X=Br ( 2 ), X=OMe ( 3 ). All the complexes reveal similar structural features but a very different magnetic profile. Complex 1 shows a gradual spin crossover while complexes 2 and 3 show a sharp spin transition. The T1/2 for complex 2 is 237 K while for complex 3 it is much higher with a value of 361 K. The spin transition temperature is shifted towards higher temperature with increasing electron‐donation ability of the ligand substituents. This experimental observation has been rationalized with DFT calculations. UV‐Vis and cyclic voltammetry studies support the fact that the electron density on the ligand increases from Me to Br to OMe substituents. To understand the change in spin states, temperature‐dependent EPR spectra have been recorded. The spin state equilibrium in the liquid state has been probed with Evans NMR spectroscopic method, and thermodynamic parameters have been evaluated for all complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号