首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well‐defined hollow Zn/Co‐based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn‐MOF (ZIF‐8) on preformed Co‐MOF (ZIF‐67) nanocrystals that involve in situ self‐sacrifice/excavation of the Co‐MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co‐ZIF shells to generate yolk–shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co‐ZIF with dominance of the Zn‐MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  相似文献   

2.
Processing metal–organic frameworks (MOFs) as films with controllable thickness on a substrate is increasingly crucial for many applications to realize function integration and performance optimization. Herein, we report a facile cathodic deposition process that enables the large‐area preparation of uniform films of zeolitic imidazolate frameworks (ZIF‐8, ZIF‐71, and ZIF‐67) with highly tunable thickness ranging from approximately 24 nm to hundreds of nanometers. Importantly, this oxygen‐reduction‐triggered cathodic deposition does not lead to the plating of reduced metals (Zn and Co). It is also operable cost‐effectively in the absence of supporting electrolyte and facilitates the construction of well‐defined sub‐micrometer‐sized heterogeneous structures within ZIF films.  相似文献   

3.
RHO zeolitic imidazolate framework (ZIF), Zn1.33(O.OH)0.33(nim)1.167(pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) analyses, and a reversed crystal growth mechanism was revealed. Initially, precursor materials joined together to form disordered aggregates, which then underwent surface recrystallization forming a core–shell structure, in which a disordered core is encased in a layer of denser, less porous crystal. When the growth continued, the shell became less and less porous, until it was a layer of true single crystal. The crystallization then extended from the surface to the core over a six‐week period until, eventually, true single crystals were formed.  相似文献   

4.
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.  相似文献   

5.
N‐doped carbon materials represent promising metal‐free electrocatalysts for the oxygen reduction reaction (ORR), the cathode reaction in fuel cells, metal–air batteries, and so on. A challenge for optimizing the ORR catalytic activities of these electrocatalysts is to tune their local structures and chemical compositions in a rational and controlled way that can achieve the synergistic function of each factor. Herein, we report a tandem synthetic strategy that integrates multiple contributing factors into an N‐doped carbon. With an N‐containing MOF (ZIF‐8) as the precursor, carbonization at higher temperatures leads to a higher degree of graphitization. Subsequent NH3 etching of this highly graphitic carbon enabled the introduction of a higher content of pyridine‐N sites and higher porosity. By optimizing these three factors, the resultant carbon materials displayed ORR activity that was far superior to that of carbon derived from a one‐step pyrolysis. The onset potential of 0.955 V versus a reversible hydrogen electrode (RHE) and the half‐wave potential of 0.835 V versus RHE are among the top ranks of metal‐free ORR catalysts and are comparable to commercial Pt/C (20 wt %) catalysts. Kinetic studies revealed lower H2O2 yields, higher electron‐transfer numbers, and lower Tafel slopes for these carbon materials compared with that derived from a one‐step carbonization. These findings verify the effectiveness of this tandem synthetic strategy to enhance the ORR activity of N‐doped carbon materials.  相似文献   

6.
Metal–organic framework (MOF)‐derived nanoporous carbon materials have attracted significant interest due to their advantages of controllable porosity, good thermal/chemical stability, high electrical conductivity, catalytic activity, easy modification with other elements and materials, etc. Thus, MOF‐derived carbons have been used in numerous applications, such as environmental remediations, energy storage systems (i.e. batteries, supercapacitors), and catalysts. To date, many strategies have been developed to enhance the properties and performance of MOF‐derived carbons. Herein, we introduce and summarize recent important approaches for advanced MOF‐derived carbon structures with a focus on precursor control, heteroatom doping, shape/orientation control, and hybridization with other functional materials.  相似文献   

7.
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   

8.
Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF‐8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal–organic framework chemistry, provides an explanation for conflicting reports on ZIF‐8 stability to water and is of outstanding significance for evaluating the potential applications of metal–organic frameworks, especially for CO2 sequestration.  相似文献   

9.
10.
Nitrogen‐doped CoO (N‐CoO) nanoparticles with high electrocatalytic activity for the oxygen‐reduction reaction (ORR) were fabricated by electrochemical reduction of CoCl2 in acetonitrile solution at cathodic potentials. The initially generated, highly reactive nitrogen‐doped Co nanoparticles were readily oxidized to N‐CoO nanoparticles in air. In contrast to their N‐free counterparts (CoO or Co3O4), N‐CoO nanoparticles with a N content of about 4.6 % exhibit remarkable ORR electrocatalytic activity, stability, and immunity to methanol crossover in an alkaline medium. The Co?Nx active sites in the CoO nanoparticles are held responsible for the high ORR activity. This work opens a new path for the preparation of nitrogen‐doped transition metal oxide nanomaterials, which are promising electrocatalysts for fuel cells.  相似文献   

11.
12.
13.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

14.
Desolvated zeolitic imidazolate framework ZIF‐4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non‐porous, low temperature phase was determined from synchrotron X‐ray powder diffraction data and its density was found to be slightly less than that of the densest ZIF phase, ZIF‐zni. The mechanism of the phase transition involves a cooperative rotation of imidazolate linkers resulting in isotropic framework contraction and pore space minimization. DFT calculations established the energy of the new structure relative to those of the room temperature phase and ZIF‐zni, while DSC measurements indicate the entropic stabilization of the porous room temperature phase at temperatures above 140 K.  相似文献   

15.
Non‐noble metal‐based metal–organic framework (MOF)‐derived electrocatalysts have recently attracted great interest in the oxygen evolution reaction (OER). Here we report a facile synthesis of nickel‐based bimetallic electrocatalysts derived from 2D nanosheet‐assembled nanoflower‐like MOFs. The optimized morphologies and large Brunauer–Emmett–Teller (BET) surface area endow FeNi@CNF with efficient OER performance, where the aligned nanosheets can expose abundant active sites and benefit electron transfer. The complex nanoflower morphologies together with the synergistic effects between two metals attributed to the OER activity of the Ni‐based bimetallic catalysts. The optimized FeNi@CNF afforded an overpotential of 356 mV at a current density of 10 mA cm?2 with a Tafel slope of 62.6 mV dec?1, and also exhibited superior durability with only slightly degradation after 24 hours of continuous operation. The results may inspire the use of complex nanosheet‐assembled nanostructures to explore highly active catalysts for various applications.  相似文献   

16.
Hydrophobic zeolitic imidazolate frameworks (ZIFs) with the chabazite ( CHA ) topology are synthesized by incorporating two distinct imidazolate links. Zn(2‐mIm)0.86(bbIm)1.14 (ZIF‐300), Zn(2‐mIm)0.94(cbIm)1.06 (ZIF‐301), and Zn(2‐mIm)0.67(mbIm)1.33 (ZIF‐302), where 2‐mIm=2‐methylimidazolate, bbIm=5(6)‐bromobenzimidazolate, cbIm=5(6)‐chlorobenzimidazolate, and mbIm=5(6)‐methylbenzimidazolate, were prepared by reacting zinc nitrate tetrahydrate and 2‐mIm with the respective bIm link in a mixture of N,N‐dimethylformamide (DMF) and water. Their structures were determined by single‐crystal X‐ray diffraction and their permanent porosity shown. All of these structures are hydrophobic as confirmed by water adsorption isotherms. All three ZIFs are equally effective at the dynamic separation of CO2 from N2 under both dry and humid conditions without any loss of performance over three cycles and can be regenerated simply by using a N2 flow at ambient temperature.  相似文献   

17.
The I2‐sorption and ‐retention properties of several existing zeolitic imidazolate frameworks (ZIF‐4, ‐8, ‐69) and a novel framework, ZIF‐mnIm ([Zn(mnIm)2]; mnIm=4‐methyl‐5‐nitroimidazolate), have been characterised using microanalysis, thermogravimetric analysis and X‐ray diffraction. The topologically identical ZIF‐8 ([Zn(mIm)2]; mIm=2‐methylimidazolate) and ZIF‐mnIm display similar sorption abilities, though strikingly different guest‐retention behaviour upon heating. We discover that this guest retention is greatly enhanced upon facile amorphisation by ball milling, particularly in the case of ZIF‐mnIm, for which I2 loss is retarded by as much as 200 °C. It is anticipated that this general approach should be applicable to the wide range of available metal–organic framework‐type materials for the permanent storage of harmful guest species.  相似文献   

18.
Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells.  相似文献   

19.
While zeolitic imidazolate framework, ZIF‐8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF‐8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single‐crystal to single‐crystal linker exchange of 2‐methylimidazole in ZIF‐8 membrane grains with 2‐imidazolecarboxaldehyde (ZIF‐90 linker), thereby enlarging the effective aperture size of ZIF‐8. The linker‐exchanged ZIF‐8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as‐prepared membranes. The linker‐exchange effect depends on the membrane synthesis method.  相似文献   

20.
The notion of metal‐free catalysts is used to refer to carbon materials modified with nonmetallic elements. However, some claimed metal‐free catalysts are prepared using metal‐containing precursors. It is highly contested that metal residues in nitrogen‐doped carbon (NC) catalysts play a crucial role in the oxygen reduction reaction (ORR). In an attempt to reconcile divergent views, a definition for truly metal‐free catalysts is proposed and the differences between NC and M‐Nx/C catalysts are discussed. Metal impurities at levels usually undetectable by techniques such as XPS, XRD, and EDX significantly promote the ORR. Poisoning tests to mask the metal ions reveal the involvement of metal residues as active sites or as modifiers of the electronic structure of the active sites in NC. The unique merits of both M‐Nx/C and NC catalysts are discussed to inspire the development of more advanced nonprecious‐metal catalysts for the ORR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号