首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of five europium(III) complexes has been prepared from heptadentate N5O2 ligands that possess a brightness of more than 10 mM ?1 cm?1 in water, following excitation over the range λ=330–355 nm. Binding of several oxy anions has been assessed by emission spectral titrimetric analysis, with the binding of simple carboxylates, lactate and citrate involving a common ligation mode following displacement of the coordinated water. Selectivity for bicarbonate allows the rapid determination of this anion in human serum, with Kd=37 mM (295 K). The complexes are internalised quickly into mammalian cells and exhibit a mitochondrial localisation at early time points, migrating after a few hours to reveal a predominant lysosomal distribution. Herein, we report the synthesis and complexation behaviour of strongly emissive europium (III) complexes that bind oxy‐anions in aqueous media with an affinity and selectivity profile that is distinctively different from previously studied systems.  相似文献   

2.
Two europium(III) coordination polymers (CPs), namely, poly[[diaquabis(μ4‐1H‐benzimidazole‐5,6‐dicarboxylato‐κ6N3:O5,O5′:O5,O6:O6′)(μ2‐oxalato‐κ4O1,O2:O1′,O2′)dieuropium(III)] dihydrate], {[Eu2(C9H4N2O4)2(C2O4)(H2O)2]·2H2O}n ( 1 ), and poly[(μ3‐1H‐benzimidazol‐3‐ium‐5,6‐dicarboxylato‐κ5O5:O5′,O6:O6,O6′)(μ3‐sulfato‐κ3O:O′:O′′)europium(III)], [Eu(C9H5N2O4)(SO4)]n ( 2 ), have been synthesized via the hydrothermal method and structurally characterized. CP 1 shows a three‐dimensional network, in which the oxalate ligand acts as a pillar, while CP 2 has a two‐dimensional network based on a europium(III)–sulfate skeleton, further extended into a three‐dimensional framework by hydrogen‐bonding interactions. The structural diversity in the two compounds can be attributed to the different acidification abilities and geometries of the anionic ligands. The luminescence properties of 1 display the characteristic europium red emission with CIE chromaticity coordinates (2/3, 0.34). Interestingly, CP 2 shows the characteristic red emission with CIE chromaticity coordinates (0.60, 0.34) when excited at 280 nm and a near‐white emission with CIE chromaticity coordinates (0.38, 0.29) when excited at 340 nm.  相似文献   

3.
A highly K+‐selective two‐photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1–100 mM is reported. The two‐photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one‐photon (OP, 430 nm) or two‐photon (TP, 860 nm) excitation and comparable K+‐induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (Kd) values in Na+‐free solutions (KdOP=(28±5) mM and KdTP=(36±6) mM ) and in combined K+/Na+ solutions (KdOP=(38±8) mM and KdTP=(46±25) mM ) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross‐section (σ2PA) of the TPEF probe+160 mM K+ is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+.  相似文献   

4.
Water‐dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual‐modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol‐based conjugated carboxylate (H L ). The obtained nanoparticles (GO‐ L ) show long‐term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so‐called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L‐ modified gadolinium oxide nanoparticles. The obtained EuIII‐doped particles (Eu:GO‐ L ) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4 nm. The average hydrodynamic diameter of the L ‐modified nanoparticles was estimated to be about 13 nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO‐ L and Eu:GO‐ L were r1=6.4 and 6.3 s?1 mM ?1 with r2/r1 ratios close to unity at 1.4 T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd‐DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.  相似文献   

5.
Eight coumarins, which carry a terminal alkene tethered by a CH2XCH2 group to their 4‐position (X=CH2, CMe2, O, S, NBoc, NZ, NTs, NBn), were synthesized in overall yields of 51–80 %. Starting materials for the syntheses were either commercially available 4‐hydroxycoumarin or 4‐formylcoumarin. The intramolecular [2+2] photocycloaddition of these coumarins gave diastereoselectively products with a tetracyclic 3,3a,4,4a‐tetrahydro‐1H‐cyclopenta[2,3]cyclobuta[1,2‐c]chromen‐5(2H)‐one skeleton. Direct irradiation at λ=300 nm in dichloromethane (c=10 mM ) led to product formation in good yields for most substrates, presumably via a singlet excited state intermediate. Due to the low coumarin absorption at λ >350 nm the photocycloaddition was slow upon irradiation at λ=366 nm. Addition of a chiral oxazaborolidine‐based Lewis acid (50 mol %) increased the reaction rate at λ=366 nm and induced a significant enantioselectivity in the [2+2] photocycloaddition. Six out of eight coumarin substrates (X=CH2, CMe2, O, NBoc, NZ, NTs) gave the respective products in yields of 72–96 % and with 74–90 % enantiomeric excess (ee) upon irradiation in dichloromethane (c=20 mM ) at ?75 °C. The Lewis acid presumably acts by coordination to the coumarin carbonyl oxygen atom, which leads to a bathochromic shift (redshift) of the UV absorption and which increases the singlet state lifetime. A second electrostatic interaction of the hydrogen atom at C3 with the oxygen atom of the oxazaborolidine is likely.  相似文献   

6.
A new regioregular head‐to‐tail (HT)‐type polypyridine with methoxyethoxyethoxy (MEEO) side chains, HT‐PMEEOPy, was synthesized by means of Kumada‐Tamao coupling polymerization of a Grignard monomer with a Ni catalyst. Although the polymer was precipitated in THF during polymerization, multiangle laser light scattering (MALLS) analysis indicated that the weight‐average molecular weight (Mw) was about 25,000. The HT content in the polymer was 95%. A solution of HT‐PMEEOPy in CHCl3 was found to emit a strong blue light when the solution was irradiated with UV light; the UV‐vis absorption maximum (λmax) and photoluminescence maximum (λmax em) were at 392 and 460 nm, respectively. To clarify the effect of regioregularity of PMEEOPy on the photoluminescence, head‐to‐head (HH) PMEEOPy was synthesized by means of Yamamoto coupling polymerization. The photoluminescence of HH‐PMEEOPy (λmax = 330 nm, λmax em = 414 nm) was weaker than that of HT‐PMEEOPy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

8.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

9.
By using pentyl‐linked bis(rhodamine)‐derived tetra‐siloxane (PRh‐Si4) as the organosilica precursor, highly ordered PRh‐bridged periodic mesoporous organosilicas (PRhPMOs) were prepared. When excited at λ=500 nm, the PRhPMO suspension that contained metal ions showed two separate emission peaks at λ=550 and 623 nm. The first peak, located at λ=550 nm, was due to ring‐opening of the spiro structure in the rhodamine moiety and the second, located at λ=623 nm, originated from fluorescent aggregates of the PRh units embedded in the silica framework of the PRhPMO. By using the different intensity ratios of the two fluorescence signals (FI550/623), PRhPMOs could be used as turn‐ON type fluorescent ratiometric chemosensors for Cu2+. Furthermore, based on the single‐exciton theory, it was deduced that the fluorescent aggregates formed were of the J‐type and had a coplanar configuration. Consequently, PRhPMOs display a longer fluorescence lifetime and greater fluorescent quantum yield than the respective monomers dissolved in solution, which is consistent with the experimental results.  相似文献   

10.
Although progress has been made to improve photocatalytic CO2 reduction under visible light (λ>400 nm), the development of photocatalysts that can work under a longer wavelength (λ>600 nm) remains a challenge. Now, a heterogeneous photocatalyst system consisting of a ruthenium complex and a monolayer nickel‐alumina layered double hydroxide (NiAl‐LDH), which act as light‐harvesting and catalytic units for selective photoreduction of CO2 and H2O into CH4 and CO under irradiation with λ>400 nm. By precisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3 %, and the H2 evolution reaction can be completely suppressed under irradiation with λ>600 nm. The photogenerated electrons matching the energy levels of photosensitizer and m‐NiAl‐LDH only localized at the defect state, providing a driving force of 0.313 eV to overcome the Gibbs free energy barrier of CO2 reduction to CH4 (0.127 eV), rather than that for H2 evolution (0.425 eV).  相似文献   

11.
A soluble all‐aromatic poly(2,5‐diphenyl‐1,4‐phenylenevinylene) (2,5‐DP‐PPV) is synthesized by utilizing aromatic phosphonium and aldehyde monomers through Wittig reaction. The H1 NMR and FTIR measurements indicate that over 50% content of cis‐vinylene units exist in polymer backbone. The diphenyl‐substituted benzaldehyde monomer plays an important role to enhance cis‐products (Z‐selectivity) in Wittig reactions. The twisted cis‐segments in polymer backbone reduce the interchain interactions and enhance the solubility of such all‐aromatic PPV derivative in common organic solvents. 2,5‐DP‐PPV exhibits good solubility in common organic solvents, such as tetrahydrofuran and chloroform. The polymer film exhibits a blue light emission (λmax = 485 nm) and a very high photoluminescence efficiency of 78%. The cis‐trans photo isomerization of this polymer in solution and the impact on the optical properties are also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5242–5250, 2008  相似文献   

12.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

13.
The initial molecular structure of 2,2′‐bis(4‐trifluoromethylphenyl)‐ 5,5′‐bithiazole has been optimized in the ground state using density functional theory (DFT). The distribution patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have also been evaluated. To shed light on the charge transfer properties, we have calculated the reorganization energy of electron λe, the reorganization energy of hole λh, adiabatic electron affinity (EAa), vertical electron affinity (EAv), adiabatic ionization potential (IPa), and vertical ionization potential (IPv) using DFT. Based on the evaluation of hole reorganization energy, λh, and electron reorganization energy, λe, it has been predicted that 2,2′‐bis(4‐trifluoromethylphenyl)‐5,5′‐bithiazole would be a better electron transport material. Finally, the effect of electric field on the HOMO, LUMO, and HOMO–LUMO gap were observed to check its suitability for the use as a conducting channel in organic field‐effect transistors. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The photoirradiation of trans‐ and cis‐poly(dimethylsilylenephenylenevinylene)s gave cis‐rich mixtures at equilibrium states. The degree of the photoisomerization could be exactly evaluated by comparing the UV spectra of the photoirradiated solutions with those of the trans and cis polymers. The geometric configuration of the trans and cis polymers was thermally stable and hardly changed even though they were heated. The trans and cis polymers exhibited different emission properties; e.g., trans polymer: λmax = 400 nm, quantum yield = 3.4×10–3; cis polymer: λmax = 380 nm, quantum yield = 1.5×10–3.  相似文献   

15.
A sensitive and effective micellar electrokinetic capillary chromatography with laser‐induced fluorescence detection approach was described for the determination of low molecular‐mass thiols using 1,3,5,7‐tetramethyl‐8‐phenyl‐(4‐iodoacetamido) difluoroboradiaza‐s‐indacene as the labeling reagent. After precolumn derivatization, baseline separation of six thiol compounds including cysteine, glutathione, N‐acetylcysteine, homocysteine, 6‐mercaptopurine, and penicillamine were achieved within 18 min. The optimal running buffer was composed of mixtures involving 25 mM sodium dodecyl sulfate, 25% (v/v) acetonitrile and 15 mM sodium phosphate buffer, pH 7.5. The detection limits (S/N = 3) were found as low as 40 pM under argon ion laser‐induced fluorescence detector (λex/λem = 488/520 nm), which were much better than the reported approaches. The accuracy and specificity of this assay for real samples were assured by a standard addition method. The proposed method has been applied to the analysis of thiols both in human plasma and plum flower samples with recoveries of 92.0–109.4%.  相似文献   

16.
We report the first pyrrole‐ring surface‐functionalized graphene quantum dots (p‐GQDs) prepared by a two‐step hydrothermal approach under microwave irradiation in an ammonia medium. The most distinct feature of the functionalized GQDs is that both the excitation and emission wavelengths fall into the visible‐light region. The p‐GQDs are excited by visible light at λex 490 nm (2.53 eV) to emit excitation‐independent photoluminescence at a maximum wavelength of λem 550 nm. This is thus far the longest emission wavelength reported for GQDs. Stable photoluminescence is achieved at pH 4–10 with an ionic strength of 1.2 mol L?1 KCl. These features make the p‐GQDs excellent probes for bio‐imaging and bio‐labeling, which is demonstrated by imaging live HeLa cells.  相似文献   

17.
The present study details the experimental and theoretical characterization of the photophysical properties of 14 examples of 2‐(phenylamino)‐1,10‐phenanthrolines ( 1 ). The absorption spectra of 1 are substituent‐dependent but in a general manner present absorption bands at wavelengths of ~230; ~300; ~335 and a shoulder at ~380 nm. Electron‐donating groups (EDG) and electron‐withdrawing groups (EWG), respectively, result in bathochromic and hypsochromic shifts. Compounds 1 are highly luminescent, in contrast to phenanthroline, and emit in the region between 350 and 500 nm with substituent‐dependent λmax emission. The emission spectra show a redshift for EDG (4‐OMe 62 nm; 4‐Me 19 nm) and a blueshift for EWG (4‐CN 41 nm; 4‐CF3 38 nm) relative to the emission of the unsubstituted parent compound 1a . Plotting the λ max EM against Hammett σ+ constants gave an excellent linear correlation demonstrating the electron‐deficient nature of the excited state and how the substituents (de)stabilize S1. Theoretical calculations revealed a HOMO‐LUMO π‐π* electronic transition to S1 which in combination with difference (S1–S0) in electron density maps revealed charge‐transfer character. Strongly electron‐withdrawing substituents switch off the charge transfer to give rise to a local excitation.  相似文献   

18.
We report the synthesis and characterization of a three‐dimensional tetraphenylethene‐based octacationic cage that shows host–guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water‐soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH???π, π–π, and/or electrostatic interactions. The cage?coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a “hamburger”‐type host–guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host–guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF=28.5 %), larger excitation–emission gap (Δλex‐em=211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF=10.5 %; Δλex‐em=11 nm; τ=4.9 ns), and purer emission (ΔλFWHM=38 nm) as compared to the host (ΔλFWHM=111 nm).  相似文献   

19.
Each Eu3+ ion in the title compound, catena‐poly­[europium(III)‐tri‐μ‐4‐methyl­benzoato‐O:O,O′;O:O,O′;O,O′:O′], {[Eu(C8H7O2)3]3}n, is coordinated by nine O atoms, and three Eu atoms form a trimeric unit. These trimeric units are linked by bridging–chelating carboxyl­ates to form an infinite one‐dimensional polymer chain.  相似文献   

20.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号