首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Variation in the position of CF3 groups in several aromatic Group‐14 compounds was studied by 19F‐NMR spectroscopy. In these compounds RnECl4?n (n=1 or 2; E=Si, Ge, or Sn; R=2,4,6‐(CF3)3C6H2 (=Ar), 2,6‐(CF3)2C6H3 (=Ar′), or 2,4‐(CF3)2C6H3 (=Ar″)), Ar, Ar′, and Ar″ are all bulky, strongly electron‐withdrawing ligands. The 19F‐NMR studies of the variation in position of the CF3 substituents in these compounds as revealed by chemical shifts could be correlated with the electronegativities of the central elements E, and with intramolecular E–F interactions derived from single‐crystal X‐ray diffraction data. These interactions are considered to play an important role in the stabilization of these compounds.  相似文献   

2.
《中国化学》2018,36(1):25-30
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne‐terminated fluorinated copolymer (Pn) of 2,2,2‐trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra‐phenylethylene (TPE) through click chemistry to form azo polymer (TPE‐azo‐Pn). The core‐shell nanoprobes (TPE‐P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self‐assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.  相似文献   

3.
2′‐O‐[(4‐Trifluoromethyl‐triazol‐1‐yl)methyl] reporter groups have been incorporated into guanosine‐rich RNA models (including a known bistable Qd/Hp RNA and two G‐rich regions of mRNA of human prion protein, PrP) and applied for the 19F NMR spectroscopic characterization of plausible G‐quadruplex/hairpin (Qd/Hp) transitions in these RNA structures. For the synthesis of the CF3‐labeled RNAs, phosphoramidite building blocks of 2′‐O‐[(4‐CF3‐triazol‐1‐yl)methyl] nucleosides (cytidine, adenosine, and guanosine) were prepared and used as an integral part of the standard solid‐phase RNA synthesis. The obtained 19F NMR spectra supported the usual characterization data (obtained by UV‐ and CD‐melting profiles and by 1H NMR spectra of the imino regions) and additionally gave more detailed information on the Qd/Hp transitions. The molar fractions of the secondary structural species (Qd, Hp) upon thermal denaturation and under varying ionic conditions could be determined from the intensities and shifts of the 19F NMR signals. For a well‐behaved Qd/Hp transition, thermodynamic parameters could be extracted.  相似文献   

4.
Multiple two‐dimensional nuclear magnetic resonance (2D‐NMR) techniques have been used to study the structures of Krytox® perfluoro(polyalkyl ether) and its mechanism of polymerization. Model compound K4, containing four Krytox® fluoropolymer repeat units, was analyzed to interpret the multiplet patterns in the NMR spectra from the polymer model. 19F {13C}‐Heteronuclear single‐quantum correlation experiments, performed with delays optimized for 1JCF and 2JCF, provided spectra that permitted identification of resonances from individual monomer units. Selective, 19F‐19F COSY 2D‐NMR experiments were performed with different excitation regions; these experiments were combined with selective inversion pulses to remove 19F‐19F J couplings in the f1 dimension. The resulting COSY spectra were greatly simplified compared with standard 19F‐19F COSY spectra, which are too complicated to interpret. They give information regarding the attachments of monomer units and also provide insights into the nature of the stereoisomers that might be present in the polymer. Both infrared and NMR spectra show peaks identifying chain end structures. With the help of these studies, resonances can be assigned, and the average number of repeat units in the polymer chain can be calculated based on the assignments obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A new visible light‐induced controlled radical polymerization of methacrylate with perfluoro‐1‐iodohexane (CF3(CF2)5I) as the initiator in the presence of a photoredox catalyst (fac‐[Ir(ppy)3]) was developed. Mechanistically, a photoexcited fac‐[Ir(ppy)3]* complex reacted with dormant C‐I species to generate the chain propagating radical and IrIVI complex, which could be reversibly reduced by the propagating radical. The molecular weight (Mn) and the corresponding distribution index (Mw/Mn = 1.4) were controlled in the polymerization of methyl methacrylate (MMA). For the polymerization of functional monomers, such as glycidyl methacrylate (GMA) and trifluoroethyl methacrylate, their monomer conversions could be up to 96 and 94%, respectively. No polymerization reaction took place without external light stimulation, indicating that the system was an ideal photo “on?off” switchable system. Furthermore, a clean diblock copolymer PMMA‐b‐PGMA was successfully synthesized with PMMA‐I as the macroinitiator. With CF3(CF2)5I as the initiator, short CF3(CF2)5? group tags were introduced on the produced polymer chains. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3283–3291  相似文献   

6.
The synthesis and spectroscopic properties of a series of CF3‐labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide‐substituted ligands based on 1,4,7,10‐tetraazacyclododecane are described. The theoretical contributions of the 19F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the LnIII ion and the fluorine nucleus, the applied magnetic field, and the re‐rotational correlation time of the complex, for a given LnIII ion. Selected complexes exhibit pH‐dependent chemical shift behaviour, and a pKa of 7.0 was determined in one example based on the holmium complex of an ortho‐cyano DO3A‐monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two 19F resonances. Relaxation analyses of variable‐temperature and variable‐field 19F, 17O and 1H NMR spectroscopy experiments are reported, aided by identification of salient low‐energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the LnIII ion and the CF3 reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in 19F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.  相似文献   

7.
Solid‐state 1H → 19F and 19F → 1H cross‐polarization magic angle spinning (CP/MAS) NMR spectra have been investigated for a semicrystalline fluoropolymer, namely poly(vinylidene fluoride) (PVDF). The 1H → 19F CP/MAS spectra can be fitted by five Lorentzian functions, and the amorphous peaks were selectively observed by the DIVAM CP pulse sequences. Solid‐state spin‐lock experiments showed significant differences in TF and TH between the crystalline and amorphous domains, and the effective time constants, THF* and T*, which were estimated from the 1H → 19F CP curves, also clarify the difference in the strengths of dipolar interactions. Heteronuclear dipolar oscillation behaviour is observed in both standard CP and 1H → 19F inversion recovery CP (IRCP) experiments. The inverse 19F → 1H CP‐MAS and 1H → 19F CP‐drain MAS experiments gave complementary information to the standard 1H → 19F CP/MAS spectra in a manner reported in our previous papers for other fluoropolymers. The value of NF/NH (where N is a spin density) estimated from the CP‐drain curve is within experimental error equal to unity, which is consistent with the chemical structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Through‐space 19F–15N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The 19F–15N coupling constants were measured at natural abundance using a spin‐state selective indirect‐detection pulse sequence. As 15N‐labelled proteins are routinely synthesized for NMR studies, through‐space 19F–15N couplings have the potential to probe the stereochemistry of these proteins by 19F labelling of some amino acids or can reveal the site of docking of fluorine‐containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by 19F nuclear magnetic resonance (NMR) spectroscopy. A 19F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L−1) contained a single sharp signal of its CF3 group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L−1 HSA to the NFA buffer solution caused splitting of the CF3 signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L−1 guanidine hydrochloride (GU) restored a single sharp signal of CF3 at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive 19F NMR experiments using warfarin, dansyl-l-asparagine, and benzocaine (site I ligands), and l-tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of 19F NMR with NFA as an 19F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of 19F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.  相似文献   

10.
The molecular structure of n-C7F16 and the 19F nuclear magnetic screening tensors are calculated by density functional theory (DFT) methods. The results of calculations are compared with 19F NMR data, and it is shown that fine polytetrafluoroethylene (PTFE) contains the terminal CF3 groups in its structure.  相似文献   

11.
A persistent perfluoroalkyl radical (PPFR), perfluoro‐3‐ethyl‐2,4‐dimethyl‐3‐pentyl, is shown to be a good source of •CF3 radicals and a useful radical capable of initiating the polymerization of vinylidene fluoride (VDF). NMR characterizations of the resulting PVDF homopolymers showed that polymerization of VDF was exclusively initiated by •CF3 radicals. The addition of •CF3 radical onto VDF was regioselective leading to CF3‐CH2‐CF2‐PVDF and the CF3 end‐group acted as an efficient label to assess the molecular weights by 19F NMR spectroscopy. Various [PPFR]0/[VDF]0 initial molar ratios lead to CF3–PVDF–CF3 of different molecular weights. When that ratio decreased, both the molecular weights and the thermostability of these PVDFs increased, showing less defects of chaining and higher crystallinity.  相似文献   

12.
The extremely labile perfluoro‐2‐arsapropene F3CAsCF2 ( 1 ) has been generated by an improved pyrolysis process of Me3SnAs(CF3)2 and found to be stabilized by the presence of hexamethyldisiloxane and tert‐butylphosphaethyne, thus allowing (i) reactivity studies with alkyne derivatives like tBuCP, (iPr)2NCP, MeCCN(iPr)2, HCCOEt and (ii) a full NMR investigation of 1 (19F, 13C). Due to the instability of 1 and some of the products, the [2+2]‐cycloaddition reactions gave the expected arsaphospha‐ and arsa‐cyclobutene derivatives, respectively, in moderate to good yields, but in some cases contaminated with side and/or decomposition products. Unequivocal characterization of the novel compounds was accomplished by spectroscopic in‐ vestigations (1H, 13C, 19F, 31P NMR, IR, MS) supported by comparison with the data of the more stable phosphorus analogues. An interesting isomerization was observed for the 2‐dialkylamino‐4,4‐difluoro‐ 1‐trifluoromethyl‐1‐arsa‐3‐phospha‐2‐cyclobutenes yielding the more stable 3‐dialkylamino‐2,4‐difluoro‐ 1‐trifluoromethyl‐1‐arsa‐2‐phospha‐3‐cyclobutenes. Quantum chemical calculations [B3LYP/6‐311+ G(d,p)] of HAsCH2, F3CAsCF2, and F3CPCF2 were carried out to compare the length of the AsC double bond with the literature data and to elucidate substituent effects on its electronic structure. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:406–419, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20118  相似文献   

13.
High‐temperature gas‐phase, solvent‐ and catalyst‐free reaction of naphthalene with an excess of RFI reagent (RF?CF3, C2F5, n‐C3F7, and n‐C4F9) was used for the first time to produce a series of highly perfluoroalkylated naphthalene products NAPH(RF)n with n=2–5. Four 95+ % pure 1,3,5,7‐NAPH(RF)4 with RF?CF3, C2F5, n‐C3F7, and n‐C4F9 were isolated using a simple chromatography‐free procedure. These new compounds were fully characterized by 19F and 1H NMR spectroscopy, X‐ray crystallography (for RF?CF3 and C2F5), atmospheric‐pressure chemical ionization mass spectrometry, and cyclic and square‐wave voltammetry. DFT calculations confirm that the proposed synthesis yields the most stable isomers that have not been accessed by alternative preparation techniques.  相似文献   

14.
The reaction of trifluormethyl dichlorophosphine (CF3PCl2) with sodium telluride Na2Te or bis(trimethylsilyl) telluride (Me3Si)2Te results in the formation of four new phosphorus tellurium heterocycles ( 1–4 ) with the electron withdrawing CF3 substituent bonded to phosphorus. The telluratriphosphetane (CF3P)3Te ( 1 ), telluratetraphospholane (CF3P)4Te ( 2 ), telluradiphosphirane (CF3P)2Te ( 3 ) and ditelluratriphospholane (CF3P)3Te2 ( 4 ) are characterized by multinuclear (31P, 19F and 125Te) NMR spectroscopy. A full analysis of the 19F NMR spectrum of telluratriphosphetane (CF3P)3Te is presented. The new heterocycles are remarkably stable in solution and eliminate only slowly tellurium to form cyclophosphines (CF3P)n (n = 3–5).  相似文献   

15.
We report through‐space (TS) 19F–19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant (TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances (dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F–19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

17.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

18.
Nearest‐neighbor chain packing in a homogeneous blend of carbonate 13C‐labeled bisphenol A polycarbonate and CF3‐labeled bisphenol A polycarbonate has been characterized using a shifted‐pulse version of magic‐angle spinning 13C{19F} rotational‐echo double‐resonance (REDOR) NMR. Complementary NMR experiments have also been performed on a polycarbonate homopolymer containing the same 13C and 19F labels. In the blend, the 13C observed spin was at high concentration, and the 19F dephasing or probe spin was at low concentration. In this situation, an analysis in terms of a distribution of isolated heteronuclear pairs of spins is valid. A comparison of the results for the blend and homopolymer defines the NMR conditions under which higher concentrations of probe labels can be used and a simple analysis of the REDOR results is still valid. The nearest neighbors of a CF3 on one chain generally include a carbonate group on an adjacent chain. A direct interpretation of the REDOR total dephasing for the polycarbonate blend indicates that at least 75% of carbonate‐carbon 13C ··· F3 nearest neighbors are separated by a narrow distribution of distances 4.7 ± 0.3 Å. In addition, analysis of the variations in REDOR spinning‐sideband dephasing shows that most of the 13C ··· F3 dipolar vectors have a preferred orientation relative to the polycarbonate mainchain axis. This combination of distance and orientational constraints is interpreted in terms of local order in the packing of the carbonate group of one polycarbonate chain relative to the isopropylidene moiety in a neighboring chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2760–2775, 2006  相似文献   

19.
The photochemical‐induced telomerization of vinylidene fluoride (VDF) with cyclohexyl (or phenyl) trifluoromethanethiosulfonate (CF3SO2SR), leading to CF3(VDF)nSR telomers, where R stands for cyclohexyl or phenyl, is presented. These sulfurated transfer agents were synthesized by the reaction between sodium triflinate (CF3SO2Na) and disulfide in the presence of bromine. 19F NMR spectroscopy enabled an assessment of the average degrees of telomerization (DPn) of these telomers with a neat CF3 end group as the label. These DPn values increased for higher [VDF]0/[CF3SO2SR]0 initial molar ratios. Interestingly, the normal/reversed ratio of VDF units in these telomers was low. Finally, the cotelomerization of VDF and hexafluoropropylene with these transfer agents was successfully achieved, leading to original ω‐CF3 fluoroelastomers, the thermal properties of which were investigated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4538–4549, 2002  相似文献   

20.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号