首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《化学:亚洲杂志》2017,12(1):145-158
Two classes of cationic palladium(II) acetylide complexes containing pincer‐type ligands, 2,2′:6′,2′′‐terpyridine (terpy) and 2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ‐donating C^N^C ligand with two N‐heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X‐ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 ( 1 ) and [Pd(C^N^C)(C≡CPh)]PF6 ( 7 ) reveal that the complex cations are arranged in a one‐dimensional stacking structure with pair‐like PdII⋅⋅⋅PdII contacts of 3.349 Å for 1 and 3.292 Å for 7 . Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd−Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo‐cytotoxicity under cellular conditions.  相似文献   

2.
A series of cholesterol‐/estradiol‐appended alkynylplatinum(II) complexes with tridentate N‐donor ligands, based on 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridine, has been synthesized and characterized by 1H NMR spectroscopy, FAB‐mass spectrometry, and elemental analysis. Their photophysical properties have also been investigated. Computational studies have been performed to provide insights into the nature of the electronic transitions. Some of the complexes have been found to form stable thermo‐ and mechanoresponsive supramolecular gels.  相似文献   

3.
A series of cyclometallated mono- and di-nuclear platinum(II) complexes and the parent organic ligand, 2,6-diphenylpyridine 1 (HC^N^CH), have been synthesized and characterized. This library of compounds includes [(C^N^C)PtII( L )] ( L =dimethylsulfoxide (DMSO) 2 and triphenylphosphine (PPh3) 3 ) and [((C^N^C)PtII)2( L‘ )] (where L‘ =N-heterocycles (pyrazine (pyr) 4 , 4,4‘-bipyridine (4,4‘-bipy) 5 or diphosphine (1,4-bis(diphenylphosphino)butane (dppb) 6 ). Their cytotoxicity was assessed against four cancerous cell lines and one normal cell line, with results highlighting significantly increased antiproliferative activity for the dinuclear complexes ( 4 – 6 ), when compared to the mononucleated species ( 2 and 3 ). Complex 6 is the most promising candidate, displaying very high selectivity towards cancerous cells, with selectivity index (SI) values >29.5 (A2780) and >11.2 (A2780cisR), and outperforming cisplatin by >4-fold and >18-fold, respectively.  相似文献   

4.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

5.
Phosphonio‐benzo[c]phospholides with an additional phosphonium ylide substituent in 3‐position were synthesized by deprotonation of appropriately substituted 1, 3‐bis‐phosphonio benzophospholide cations and characterized by spectroscopic and analytical data. The ability of these molecules to act as bidentate P, C‐chelating ligands to transition metal atoms was demonstrated in the reactions with [W(CO)4(norbornadiene)] and [MCl2(cyclooctadiene)] (M = Pd, Pt). The PdII and PtII complexes are distinguished by a strong inclination towards addition of H2O to the 10π‐electron system of the ligand. The molecular structures of a W0 complex with a P, C‐chelating ylidyl‐phosphonio‐benzophospholide ligand and of the product resulting from H2O‐addition to a corresponding PtII complex were determined. The structural parameters of the W0 complex provide evidence for the presence of substantial steric strain around the metal atom.  相似文献   

6.
To investigate how the central metalloligand geometry influences distant or vicinal metal‐to‐metal charge‐transfer (MMCT) properties of polynuclear complexes, cis‐ and trans‐isomeric heterotrimetallic complexes, and their one‐ and two‐electron oxidation products, cis/trans‐ [Cp(dppe)FeIINCRuII(phen)2CN‐FeII(dppe)Cp][PF6]2 (cis/trans‐ 1 [PF6]2), cis/trans‐[Cp(dppe)FeIINCRuII(phen)2CNFeIII‐(dppe)Cp][PF6]3 (cis/trans‐ 1 [PF6]3) and cis/trans‐[Cp(dppe)FeIIINCRuII(phen)2CN‐FeIII(dppe)Cp][PF6]4 (cis/trans‐ 1 [PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external FeII atoms of the cis‐ and trans‐isomeric complexes cis/trans‐ 1 [PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans‐ 1 [PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the RuII‐CN‐FeII subunit to a FeIII d orbital with some contributions from the co‐ligands. Moreover, the NIR transition energy in trans‐ 1 [PF6]3 is lower than that in cis‐ 1 [PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two‐electron oxidized complexes show that trans‐ 1 [PF6]4 possesses lower vicinal RuII→FeIII MMCT transition energy than cis‐ 1 [PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations.  相似文献   

7.
A series of tricarbonyl rhenium(I) complexes of the type fac‐[ReI(CO)3(ppl)(L)]0/+, where ppl is pyrazino[2,3‐f][1,10]phenanthroline, and where L is Cl?, TfO?, 4‐(tert‐butyl)pyridine (tBu‐py), 4‐methoxypyridine (MeO‐py), 4,4′‐bipyridyl (bpy), or 10‐(picolin‐4‐yl)phenothiazine (pptz), were synthesized and fully characterized. In all complexes, an increment in the electron‐acceptor properties of ppl compared to the free ligand was observed. This effect was more significant for pyridine‐type ligands, especially for pptz, compared to Cl? or TfO?. The properties of fac‐[Re(CO)3(ppl)(pptz)]PF6 were compared with those of the analogous compound fac‐[Re(CO)3(dppz)(pptz)]PF6, where dppz is dipyrido(3,2‐a : 2′,3′‐c)phenazine, the goal being to generate long‐lived excited charge‐transfer (CT) states. In this respect, fac‐[Re(CO)3(ppl)(pptz)]PF6 seems to be a promising candidate.  相似文献   

8.
A novel class of alkynylgold(III) complexes of the dianionic ligands derived from 2,6‐bis(benzimidazol‐2′‐yl)pyridine (H2bzimpy) derivatives has been synthesized and characterized. The structure of one of the complexes has also been determined by X‐ray crystallography. Electronic absorption studies showed low‐energy absorption bands at 378–466 nm, which are tentatively assigned as metal‐perturbed π–π* intraligand transitions of the bzimpy2? ligands. A computational study has been performed to provide further insights into the nature of the electronic transitions for this class of complexes. One of the complexes has been found to show gelation properties, driven by π–π and hydrophobic–hydrophobic interactions. This complex exhibited concentration‐ and temperature‐dependent 1H NMR spectra. The morphology of the gel has been characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  相似文献   

9.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

10.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

11.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

12.
Two structurally similar trans‐bis(pyridine) dichloropalladium(II)‐ and platinum(II)‐type complexes were synthesized and characterized. They both self‐assemble in n‐hexane to form viscous fluids at lower concentrations, but form metallogels at sufficient concentrations. The viscous solutions were studied by capillary viscosity measurements and UV/Vis absorption spectra monitored during the disassembly process indicated that a metallophilic interaction was involved in the supramolecular polymerization process. For the two supramolecular assemblies, uncommon continuous porous networks were observed by using SEM and TEM revealed that they were built from nanofibers that fused and crosslinked with the increase of concentration. The xerogels of the palladium and platinum complexes were carefully studied by using synchrotron radiation WAXD and EXAFS. The WAXD data show close stacking distances driven by π–π and metal–metal interactions and an evident dimer structure for the platinum complex was found. The coordination bond lengths were extracted from fitting of the EXAFS data. Moreover, close PtII–PtII (PdII–PdII) and Pt?Cl (Pd?Cl) interactions proposed from DFT calculations in the reported oligo(phenylene ethynylene) (OPE)‐based palladium(II) pyridyl supramolecular polymers were also confirmed by using EXAFS. The PtII–PtII interaction is more feasible for supramolecular interaction than the PdII–PdII interaction in our simple case.  相似文献   

13.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

14.
The syntheses and crystal structures of the title Pt2II and Pt2III dimers doubly bridged with N,N‐dimethyl­guanidinate ligands, namely bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)platinum(II)](Pt—Pt) bis­(hexa­fluoro­phosphate) acetonitrile disolvate, [Pt2II(C3H8N3)2(C10H8N2)2](PF6)2·2CH3CN, (I), and guanidinium bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)sulfatoplatinum(III)](Pt—Pt) bis­(hexa­fluoro­phosphate) nitrate hexa­hydrate, (C3H10N3)[PtIII2(C3H8N3)2(SO4)2(C10H8N2)2]NO3·6H2O, (II), are reported. The oxidation of the Pt2II dimer into the Pt2III dimer results in a marked shortening of the Pt—Pt distance from 2.8512 (6) to 2.5656 (4) Å. The change is mainly compensated for by the change in the dihedral angle between the two Pt coordination planes upon oxidation, from 21.9 (2) to 16.9 (3)°. We attribute the relatively strong one‐dimensional stack of dimers achieved in the Pt2II compound in part to the strong PtII⋯C(bpy) associations (bpy is 2,2′‐bipyridine) in the crystal structure [Pt⋯C = 3.416 (10) and 3.361 (12) Å].  相似文献   

15.
A “metal–ketimine+ArI(OR)2” approach has been developed for preparing metal–ketimido complexes, and ketimido ligands are found to stabilize high‐valent metallophthalocyanine (M? Pc) complexes such as ruthenium(IV) phthalocyanines. Treatment of bis(ketimine) ruthenium(II) phthalocyanines [RuII(Pc)(HN?CPh2)2] ( 1a ) and [RuII(Pc)(HNQu)2] ( 1b ; HNQu=N‐phenyl‐1,4‐benzoquinonediimine) with PhI(OAc)2 affords bis(ketimido) ruthenium(IV) phthalocyanines [RuIV(Pc)(N?CPh2)2] ( 2a ) and [RuIV(Pc)(NQu)2] ( 2b ), respectively. X‐ray crystal structures of 1b and [RuII(Pc)(PhN?CHPh)2] ( 1c ) show Ru? N(ketimine) distances of 2.075(4) and 2.115(3) Å, respectively. Complexes 2a , 2b readily revert to 1a , 1b upon treatment with phenols. 1H NMR spectroscopy reveals that 2a , 2b are diamagnetic and 2b exists as two isomers, consistent with a proposed eclipsed orientation of the ketimido ligands in these ruthenium(IV) complexes. The reaction of 1a , 1b with PhI(OAc)2 to afford 2a , 2b suggests the utility of ArI(OR)2 as an oxidative deprotonation agent for the generation of high‐valent metal complexes featuring M? N bonds with multiple bonding characters. DFT and time‐dependent (TD)‐DFT calculations have been performed on the electronic structures and the UV/Vis absorption spectra of 1b and 2b , which provide support for the diamagnetic nature of 2b and reveal a significant barrier for rotation of the ketimido group about the Ru? N(ketimido) bond.  相似文献   

16.
RuII compounds have been universally investigated due to their unique physical and chemical properties. In this paper, a new RuII compound based on 2,2′‐bipy and Hpmtz [2,2′‐bipy = 2,2′‐bipyridine, Hpmtz = 5‐(2‐pyrimidyl)‐1H‐tetrazole], namely [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O was prepared and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O shows a mononuclear structure and forms a three‐dimensional network by non‐classic hydrogen bonds. The ability of generation of ROS (reactive oxygen species) makes it has a low phototoxicity IC50 (half‐maximal inhibitory concentration) after Xenon lamp irradiation on Hela cells in vitro. The results demonstrate that [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O with high light toxicity and low dark toxicity may be a potential candidate for photodynamic therapy.  相似文献   

17.
The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris‐ cyclometalated PtIV complexes are reported. The complexes mer‐[Pt(C^N)2(C′^N′)]OTf, with C^N=C‐deprotonated 2‐(2,4‐difluorophenyl)pyridine (dfppy) or 2‐phenylpyridine (ppy), and C′^N′=C‐deprotonated 2‐(2‐thienyl)pyridine (thpy) or 1‐phenylisoquinoline (piq), were obtained by reacting bis‐ cyclometalated precursors [Pt(C^N)2Cl2] with AgOTf (2 equiv) and an excess of the N′^C′H pro‐ligand. The complex mer‐[Pt(dfppy)2(ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long‐lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π–π* energy gap and have very little metal character. DFT and time‐dependent DFT (TD‐DFT) calculations on mer‐[Pt(ppy)2(C′^N′)]+ (C′^N′=thpy, piq) and mer/fac‐[Pt(ppy)3]+ support this assignment and provide a basis for the understanding of the luminescence of tris‐cyclometalated PtIV complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state.  相似文献   

18.
Acid‐base and ligating properties of three bis(substituted)pyrazine (pz) and pyrimidine (pym) ligands (pyrazine‐2, 5‐dicarboxylic acid, 2, 5‐pzdcH2, 2, 3‐bis(pyridine‐2‐yl)pyrazine, 2, 3‐bppz, pyrimidine‐4, 6‐dicarboxylic acid, 4, 6‐pmdcH2) toward cis‐PtIIa2 (a = NH3, a2 = en, a2 = 2, 2′‐bpy) have been studied. Combinations of pz‐N/pym‐N with donor atoms of the substituents lead to 5‐membered platinum chelates, but exclusive N, N‐coordination through the pyridyl substituents of 2, 3‐bppz can lead to a 7‐membered platinum chelate with a characteristic L‐shape of the resulting cation. It is observed for PtII(2, 2′‐bpy), yet not for PtII(en), and is a consequence of differences in sterical interactions between the 2, 3‐bppz ligand and the coligands of PtII.  相似文献   

19.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry.  相似文献   

20.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号