共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(1):218-224
Structural preferences of single‐walled and coordinatively saturated spherical and tubular nanostructures of silica have been determined by ab initio calculations. Two families of spherical (SiO2)n clusters derived from Platonic solids and Archimedean polyhedra are depicted, with n ranging from 4–120. The analogue of a truncated icosidodecahedron, Ih‐symmetric Si120O240, is favored in energy, closely followed by the Ih‐symmetric Si60O120‐truncated icosahedron. The silica nanotubes derived from spherical clusters are capped by Si2O2 rings, whereas the tubular section consists of single oxygen bridges. Periodic studies performed with open‐ended silica nanotubes and the α‐quartz polymorph of silica, along with a comparisons to fullerenes and carbon nanotubes, suggest that tubes with diameters of approximately 1 nm should be chemically stable. 相似文献
3.
Holger F Bettinger 《Chemphyschem》2005,6(6):1169-1174
Ab initio (RI-MP2/TZVPP) computations were employed to investigate the interaction between hydrogen-bond donors H2O and CH3OH and covalently bound fluorine in organofluorine compounds. While the CFHO interaction energy is around 3 kcal mol(-1) for unstrained systems, the linear correlation between pyramidalization angle at the carbon atom and the interaction energy suggests that increased binding can be obtained in strained systems. This is confirmed for the dihydrodifluoropyrene-methanol pair, but a large portion of the binding energy is due to the interaction of the pi system with the oxygen atom. Density functional periodic boundary condition computations (PBC-PBE/6-31G*) of the structures of (5,5) and (10,10) armchair (C2F)n fluorinated SWNTs (F-SWNTs) indicate that the pyramidalization at the fluorine-binding carbon atoms are too similar to that of CH3F to enhance the hydrogen-bond acceptor properties of fluorine significantly. The solubility of F-SWNTs in alcohols therefore could be due to a combination of hydrogen bonds and van der Waals interactions with the pi systems. 相似文献
4.
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (${\mu _{\rm{O}} }$ ), the vacancy formation and adsorption energies were determined as a function of ${\mu _{\rm{O}} }$ . Under oxygen‐rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen‐poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies. 相似文献
5.
Veacheslav Vieru Prof. Dr. Liviu F. Chibotaru 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(15):5309-5318
A dinuclear CoII complex ( 1 ) featuring unprecedented anodic and cathodic switches for single‐molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013 , 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high‐spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([ 1 (OEt2)]+) and reduced ([ 1 ]?) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken‐symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field. 相似文献
6.
7.
8.
9.
Simultaneous Aromatic–Beryllium Bonds and Aromatic–Anion Interactions: Naphthalene and Pyrene as Models of Fullerenes,Carbon Single‐Walled Nanotubes,and Graphene
下载免费PDF全文

Dr. Marta Marín‐Luna Prof. Ibon Alkorta Prof. José Elguero Prof. Otilia Mó Prof. Manuel Yáñez 《Chemphyschem》2015,16(12):2680-2686
The possibility of forming stable BeR2:ArH:Y? (R=H, F, Cl; ArH=naphthalene, pyrene; Y=Cl, Br) ternary complexes in which the beryllium compounds and anions are located on the opposite sides of an extended aromatic system is explored by means of MP2/aug‐cc‐pVDZ ab initio calculations. Comparison of the electron‐density distribution of these ternary complexes with the corresponding BeR2:ArH and ArH:Y? binary complexes reveals the existence of significant cooperativity between the two noncovalent interactions in the triads. The energetic effects of this cooperativity are quantified by evaluation of the three‐body interaction energy Δ3E in the framework of the many‐body interaction‐energy (MBIE) approach. Although an essential component of the interaction energies is electrostatic and is well reflected in the changes in the molecular electrostatic potential of the aromatic system on complexation, strong polarization effects, in particular for the BeR2:ArH interactions, also play a significant role. The charge transfers associated with these polarization effects are responsible for significant distortion of both the BeR2 and the aromatic moieties. The former are systematically bent in all the complexes, and the latter are curved to a degree that depends on the nature of the R substituents of the BeR2 subunit. 相似文献
10.
11.
《Chemphyschem》2003,4(12):1283-1289
Fluorination of single‐walled carbon nanotubes by reaction with elemental fluorine at elevated temperatures provides fluorinated single‐walled carbon nanotubes (F‐SWNT), which have the highest degree of functionalization (up to F/C=1/2) of any derivatized carbon‐nanotube material reported to date. Also, F‐SWNTs have received more scrutiny than any other functionalized carbon nanotubes. This Minireview covers experimental and computational investigations of F‐SWNTs with a focus on the nature and the strength of the C–F linkage. 相似文献
12.
Christian Brand Olivia Oeltermann Martin Wilke Prof. Dr. Jörg Tatchen Prof. Dr. Michael Schmitt 《Chemphyschem》2012,13(13):3134-3138
The structure and electronic properties of the electronic ground state and the lowest excited singlet state (S1) of 5‐fluoroindole (5FI) were determined by using rotationally resolved spectroscopy of the vibration‐less electronic origin of 5FI. From the parameters of the axis reorientation Hamiltonian, the absolute orientation of the transition dipole moment in the molecular frame was determined and the character of the excited state was identified as Lb. 相似文献
13.
Covalent Attachment of Anderson‐Type Polyoxometalates to Single‐Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries
下载免费PDF全文

Lujiang Huang Wei Chen Prof. Carsten Streb Prof. Yu‐Fei Song 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(17):6469-6474
Single‐walled carbon nanotubes (SWNTs) covalently functionalized with redox‐active organo‐modified polyoxometalate (POM) clusters have been synthesized and employed as electrode materials in lithium ion batteries. The Anderson cluster [MnMo6O24]9? is functionalized with Tris (NH2C(CH2OH)3) moieties, giving the new organic–inorganic hybrid [N(nC4H9)4]3[MnMo6O18{(OCH2)3CNH2}2]. The compound is then covalently attached to carboxylic acid‐functionalized SWNTs by amide bond formation and the stability of this nanocomposite is confirmed by various spectroscopic methods. Electrochemical analyses show that the nanocomposite displays improved performance as an anode material in lithium ion batteries compared with the individual components, that is, SWNTs and/or Anderson clusters. High discharge capacities of up to 932 mAh g?1 at a current density of 0.5 mA cm?2 can be observed, together with high long‐term cycling stability and decreased electrochemical impedance. Chemisorption of the POM cluster on the SWNTs is shown to give better electrode performance than the purely physisorbed analogues. 相似文献
14.
V. M. Zainullina M. A. Korotin V. L. Kozhevnikov 《Russian Journal of Electrochemistry》2007,43(5):570-575
Using the first-principle nonempirical linear muffin-tin orbital method in the tight-binding approximation (TB-LMTO) to the LSDA + U approximation, the electronic and magnetic structures and defect formation in strontium ferrite Sr3Fe2O6 are studied. It is found that Sr3Fe2O6 is a G type antiferromagnetic with the semiconductor electronic structure. The calculated band gap of 1.82 eV agrees well with experimental value (~2 eV). The ferrite spectrum corresponds to that of a semiconductor with a band gap of charge transfer. Iron ions in Sr3Fe2O6 are in a high-spin state and have configuration t 2g ↑3 e g ↑2 e g ↓1 . The calculated local magnetic moment on the iron ions is 3.9 μB. The presence of iron ions with a magnetic moment approaching 4 μB in Sr3Fe2O6 is explained by strong hybridization of 3d orbitals of iron and 2p orbitals of oxygen. The high-spin state of iron ions is described by d 5 + d 6 L states with predominant contribution d 6L, where L is a hole on oxygen. Based on ab initio LSDA + U calculations, various types and configurations of defects in the oxygen sublattice (oxygen vacancies, anti-Frenkel defects) are studied and a model for ionic transport in Sr3Fe2O6 is proposed. 相似文献
15.
J. Tyler Gish Ivan A. Popov Prof. Alexander I. Boldyrev 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(14):5307-5310
A new class of aluminum homocatenated compounds (LinAlnH2n+2) is proposed based on quantum chemical calculations. In these compounds, Al abstracts an electron from Li, becoming valence isoelectronic with C, Si, and Ge, thus mimicking respective structural features of Group 14 hydrides. Using the Coalescence Kick search program coupled with density functional theory calculations, we investigated the potential energy surfaces of Li2Al2H6 and Li3Al3H6. Then single‐point‐energy coupled‐cluster calculations were performed for the lowest energy structures found. Indeed, the global minima established for Li2Al2H6 and Li3Al3H6 contain the Al2H62? and Al3H63? kernels, which are isostructural with ethane (C2H6), disilane (Si2H6), digermane (Ge2H6) and propane (C3H8), trisilane (Si3H8), trigermane (Ge3H8) molecules, respectively. Structural, energetic, and electronic characteristics of the Li2Al2H6 and Li3Al3H8 compounds are presented and the viability of their synthesis is discussed. 相似文献
16.
Gerald H. Lushington Pablo J. Bruna Friedrich Grein 《International journal of quantum chemistry》1997,63(2):511-521
For the 2Σ+ ground states of the ions Li2+, Li2−, and Be2+, the dependence of the magnetic moment (parametrized by g-shifts) on the bond length R was studied at the ROHF level. The Δ g-values were calculated via a perturbative approach (complete to second order in Breit-Pauli interactions) using quadruple-zeta AO basis sets augmented by semidiffuse and polarization functions. All Δ g-values in these systems are negative. The parallel component Δ g∥ generally changes little with R, remaining close to the g-shift of the corresponding 2S atomic dissociation product. For Li2+ and Be2+, the perpendicular component Δ g ⟂ is more sensitive to geometry than is Δ g∥, mainly because of the second-order magnetic coupling with excited 2Π states. For Li2−, Δ g ⟂ and Δ g∥ are similar due to the large size of the 2σu, SOMO, resulting in g-values close to that of a free electron. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 511–521, 1997 相似文献
17.
Dr. Cunku Dong Prof. Xin Li Wei Zhao Pengfei Jin Xiujuan Fan Prof. Jingyao Qi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(30):10046-10056
A unique one‐dimensional (1D) sandwich single‐walled TiO2 nanotube (STNT) is proposed as a photoanode nanomaterial with perfect morphology and large specific surface area. We have thoroughly examined the elementary photoelectronic processes occurring at the porphyrin dye/STNT hetero‐interface in dye‐sensitized solar cells (DSSCs) by theoretical simulation. It is desirable to investigate the interfacial photoelectronic processes to elucidate the electron transfer and transport mechanism in 1D STNT‐based DSSCs. We have found that the photoexcitation and interfacial charge separation mechanism can be described as follows. A ground‐state electron of the dye molecule (localized around the electron donor) is first promoted to the excited state (distributed electron donor), and then undergoes ultrafast injection into the conduction band of the STNT, leaving a hole around the oxidized dye. Significantly, the injected electron in the conduction band is transported along the STNT by means of Ti 3d orbitals, offering a unidirectional electron pathway toward the electrode for massive collection without the observation of trap states. Our study not only provides theoretical guidelines for the modification of TiO2 nanotubes as a photoanode material, but also opens a new perspective for the development of a novel class of TiO2 nanotubes with high power‐generation efficiency. 相似文献
18.
Imgon Hwang Seulgi So Mohamed Mokhtar Abdelmohsen Alshehri Shaeel A. Al‐Thabaiti Dr. Anca Mazare Prof. Patrik Schmuki 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(25):9204-9208
In the present work we report significant enhancement of the photoelectrochemical properties of self‐ organized TiO2 nanotubes by a combined “de‐coring” of classic nanotubes followed by an appropiate TiCl4 treatment. We show that, except for the expected particle decoration, a key effect of the TiCl4 treatment is that the electron transport characteristics in TiO2 nanotubes can be drastically improved, for example, we observe an enhancement of up to 70 % in electron‐transport times. 相似文献
19.
Prof. Dr. Jared K. Olson Alexander S. Ivanov Prof. Dr. Alexander I. Boldyrev 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(22):6636-6640
A theoretical study of ozone isoelectronic Li3N3 species has been performed. Ab initio electronic structure calculations prove the viability of the ozone‐like Li3N3 molecule that might become synthesized. The predicted Li3N3 species with a novel N33? molecular motif possess structural and chemical bonding features similar to that of O3 molecules and can thus be considered as an “all‐nitrogen ozone”. 相似文献
20.
Beatrice Fantini Prof. Francesco Faglioni 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(43):15501-15507
Extremely short (<1 nm) fragments of zig‐zag carbon nanotubes are studied with ab‐initio techniques to determine their geometric and electronic structure as well as their magnetic susceptibility. It is found that for lengths of a few carbon–carbon bonds, each fragment can be viewed as composed of crowns, that is, zig‐zag rings of carbon atoms along the circumference of the tube. In this case, two kinds of electronic structures are found, depending on whether the number of carbon atoms in each crown is even or odd. Systems comprising three or more crowns either have a high spin ground state or involve a charge transfer across the length of the fragment. Conjugation changes qualitatively when the length of the fragment approaches and surpasses its girth. Indications regarding the predicted chemical stability and electronic response are provided and interpreted in terms of current densities induced within each crown by a magnetic field along the tube axis. 相似文献