首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Firefly oxyluciferin presents a pH‐sensitive fluorescence in aqueous solutions. Its fluorescence spectra are composed of two green peaks at different pH values, despite the enolate anion being the only emitter. A computational approach was used to further elucidate the photoprotolytic cycle of oxyluciferin and investigate its pH sensitivity. It was found that oxyluciferin forms π–π stacking complexes both in the ground and excited states, at basic and acidic/neutral pH. However, at different pH values, these complexes adopt a different conformation, which explains the lower energy of the emission at acidic/neutral pH, in comparison with the emission at basic pH.  相似文献   

2.
Firefly oxyluciferin is a photoacid that presents a pH‐sensitive fluorescence, which results from pH‐dependent changes on the conformation of self‐aggregated π–π stacking complexes. Luciferin is a derivative of oxyluciferin with very similar fluorescence and photoacidic properties. This similarity indicates that luciferin is also expected to be able to form π–π stacking complexes, but no pH‐sensitive fluorescence is found for this compound. Here, a theoretical approach is used to rationalize this finding. We have found that luciferin only forms π–π stacking complexes in the ground state at acidic pH. At basic pH and in the excited state, luciferin is present as a dianion. This species is not able to self‐aggregate, owing to repulsive electrostatic interactions. Thus, this emissive species is not subject to π–π stacking interactions; this explains its pH‐insensitive fluorescence.  相似文献   

3.
对萤火虫氧化荧光素(S)-2-(6-羟基-2-苯并噻唑基)-2-噻唑啉-4-酮(BTZ)中苯并噻唑环的N和S原子进行取代, 形成一系列萤火虫氧化荧光素类似物, 并采用TD B3LYP/6-31+G(d)方法, 通过计算氧化物中性态与羟基去质子化后的负一价态在气相、水溶液和模拟生物环境下的吸收与发射光谱, 讨论环内不同取代原子对光谱的影响. 结果表明, X1位以O原子取代S原子的化合物的最大吸收值发生蓝移, 以N原子取代S原子的化合物的最大吸收值发生红移. 去质子化可增加苯环上π轨道成份, 降低能隙, 从而有利于提高电子跃迁几率, 使荧光发射波长红移; 通过取代X1和X2位杂原子, 可调节发射光谱红移达44 nm, 蓝移达41 nm(在模拟蛋白中). 6种化合物荧光发光范围较宽, 振子强度较大, 可以作为潜在的化学发光材料用于生物成像研究.  相似文献   

4.
A theoretical analysis of the enol‐based photoacidity of oxyluciferin in water is presented. The basis for this phenomenon is found to be the hydrogen‐bonding network that involves the conjugated photobase of oxyluciferin. The hydrogen‐bonding network involving the enolate thiazole moiety is stronger than that of the benzothiazole phenolate moiety. Therefore, enolate oxyluciferin should be stabilized versus the phenolate anion. This difference in strength is attributed to the fact that the thiazole moiety has more potential hydrogen‐bond acceptors near the proton donor atom than the benzothiazole moiety. Moreover, the phenol‐based excited‐state proton transfer leads to a decrease in the hydrogen‐bond acceptor potential of the thiazole atoms. The ground‐state enol‐based acidity of oxyluciferin is also studied. This phenomenon can be explained by stabilization of the enolate anion through strengthening of a bond between water and the nitrogen atom of the thiazole ring, in an enol‐based proton‐transfer‐dependent way.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号