首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

2.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

3.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

4.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

5.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

6.
Photocyclization of 3‐chloro‐N‐(9‐phenanthryl)benzo[b]‐thiophene‐2‐carboxamide ( 3 ) and 3‐chloro‐N‐(9‐phenanthryl)‐naphtho[1,2‐b]thiophene‐2‐carboxamide ( 10 ) yielded dibenzo[f,h]benzothieno[2,3‐c]‐quinolin‐10(9H)‐one ( 4 ) and dibenzo[f,h]naphtho[2′,1′:4,5]thieno[2,3‐c]quinolin‐10(9H)‐one ( 11 ), respectively. Further elaboration of the lactams provided three novel unsubstituted new ring systems.  相似文献   

7.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

8.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

9.
A series of agostic σ‐borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room‐temperature reaction of [Cp*Mo(CO)3Me], 1 with Li[BH3(EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2(μ‐H)BH2EPh] in good yields. With 2‐mercapto‐benzothiazole, an N,S‐carbene‐anchored σ‐borate complex [Cp*Mo(CO)2BH3(1‐benzothiazol‐2‐ylidene)] ( 5 ) was isolated. Further, a transmetalation of the B‐agostic ruthenium complex [Cp*Ru(μ‐H)BHL2] ( 6 , L=C7H4NS2) with [Mn2(CO)10] affords a new B‐agostic complex, [Mn(CO)3(μ‐H)BHL2] ( 7 ) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3] unit. Natural‐bond‐orbital analyses of 5–7 indicate significant delocalization of the electron density from the filled σB?H orbital to the vacant metal orbital.  相似文献   

10.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

11.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

12.
A new imidazolinium ligand precursor [L2H]Cl ( 2 ) was prepared in 86 % yield. Compared with its imidazolium counterpart, [L1H]Cl ( 1 ), 2 is very sensitive to moisture and can undergo ring‐opening reactions very readily. Palladium complexes with the ring‐opened products from imidazolinium salts were isolated and characterized by X‐ray crystallography. Theoretical studies confirmed that the imidazolinium salt has a higher propensity for the ring‐opening reaction than the imidazolium counterpart. New mixed phosphine/carbene palladium complexes, cis‐[PdCl2(L)(PR3)] (L=L1 and L2; R=Ph, Cy), were successfully prepared. These complexes are highly robust as revealed by variable‐temperature NMR spectroscopic studies and thermal gravimetric analysis. The structural and electronic properties of the new complexes on varying the carbene group (imidazol‐2‐ylidene group (unsaturated carbene) vs. imidazolin‐2‐ylidene (saturated carbene)) and the phosphine group (PPh3 vs. PCy3) were studied in detail by X‐ray crystallography, X‐ray photoelectron spectroscopy, and theoretical calculations. The catalytic study reveals that cis‐[PdCl2(L2)(PCy3)] is a competent PdII precatalyst for Suzuki coupling reactions, in which unreactive aryl chlorides can be applied as substrates.  相似文献   

13.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

14.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   

15.
The molecular structure of the benzimidazol‐2‐ylidene–PdCl2–pyridine‐type PEPPSI (pyridine‐enhanced precatalyst, preparation, stabilization and initiation) complex {1,3‐bis[2‐(diisopropylamino)ethyl]benzimidazol‐2‐ylidene‐κC2}dichlorido(pyridine‐κN)palladium(II), [PdCl2(C5H5N)(C23H40N4)], has been characterized by elemental analysis, IR and NMR spectroscopy, and natural bond orbital (NBO) and charge decomposition analysis (CDA). Cambridge Structural Database (CSD) searches were used to understand the structural characteristics of the PEPPSI complexes in comparison with the usual N‐heterocyclic carbene (NHC) complexes. The presence of weak C—H…Cl‐type hydrogen‐bond and π–π stacking interactions between benzene rings were verified using NCI plots and Hirshfeld surface analysis. The preferred method in the CDA of PEPPSI complexes is to separate their geometries into only two fragments, i.e. the bulky NHC ligand and the remaining fragment. In this study, the geometry of the PEPPSI complex is separated into five fragments, namely benzimidazol‐2‐ylidene (Bimy), two chlorides, pyridine (Py) and the PdII ion. Thus, the individual roles of the Pd atom and the Py ligand in the donation and back‐donation mechanisms have been clearly revealed. The NHC ligand in the PEPPSI complex in this study acts as a strong σ‐donor with a considerable amount of π‐back‐donation from Pd to Ccarbene. The electron‐poor character of PdII is supported by π‐back‐donation from the Pd centre and the weakness of the Pd—N(Py) bond. According to CSD searches, Bimy ligands in PEPPSI complexes have a stronger σ‐donating ability than imidazol‐2‐ylidene ligands in PEPPSI complexes.  相似文献   

16.
The bis‐phosphonio‐benzo[c]phospholide tetraphenylborate 4 [BPh4] reacts with CpCo(C2H4)2 to form a chelate complex [Co(η5–Cp)(κ2P2(P=C) –4 )][BPh4] ( 6 [BPh4]) which was characterized by means of spectroscopic techniques and a single crystal X‐ray diffraction study. The observed η2(π)‐coordination of the benzophospholide moiety in the cation 6 is highly unusual for aromatic phosphorus heterocycles. The structural data suggest a pronounced coordination‐induced localization of π‐electrons in the condensed ring system.  相似文献   

17.
Diffraction‐quality single crystals of two gold(I) complexes, namely bis(1,3‐dimesityl‐4,5‐naphthoquinoimidazol‐2‐ylidene)gold(I) chloride benzene monosolvate, [Au(C29H26N2O2)2]Cl·C6H6 or [(NQMes)2Au]Cl·C6H6, 2 , and bis(1,3‐dimesityl‐4,5‐naphthoquinoimidazol‐2‐ylidene)gold(I) dichloridoaurate(I) dichloromethane disolvate, [Au(C29H26N2O2)2][AuCl2]·2CH2Cl2 or [(NQMes)2Au][AuCl2]·2CH2Cl2, 4 , were isolated and studied with the aid of single‐crystal X‐ray diffraction analysis. Compound 2 crystallizes in a monoclinic space group C2/c with eight molecules in the unit cell, while compound 4 crystallizes in the triclinic space group P with two molecules in the unit cell. The crystal lattice of compound 2 reveals C—H…Cl? interactions that are present throughout the entire structure representing head‐to‐tail contacts between the aromatic (C—H) hydrogens of naphthoquinone and Cl? counter‐ions. Compound 4 stacks with the aid of short interactions between a naphthoquinone O atom of one molecule and the mesityl methyl group of another molecule along the a axis, leading to a one‐dimensional strand that is held together by strong π–η2 interactions between the imidazolium backbone and the [AuCl2]? counter‐ion. The bond angles defined by the AuI atom and two carbene C atoms [C(carbene)—Au—C(carbene)] in compounds 2 and 4 are nearly rectilinear, with an average value of ~174.1 [2]°. Though 2 and 4 share the same cation, they differ in their counter‐anion, which alters the crystal lattice of the two compounds. The knowledge gleaned from these studies is expected to be useful in understanding the molecular interactions of 2 and 4 under physiological conditions.  相似文献   

18.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

19.
The reactivity of two paramagnetic nickel(I) compounds, CpNi(NHC) (where Cp=cyclopentadienyl; NHC=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene (IMes) or 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr)), towards [Na(dioxane)x][PnCO] (Pn=P, As) is described. These reactions afford symmetric bimetallic compounds (μ222‐Pn2){Ni(NHC)(CO)}2. Several novel intermediates en route to such species are identified and characterised, including a compound containing the PCO? anion in an unprecedented μ222‐binding mode. Ultimately, on treatment of the (μ222‐Pn2){Ni(IMes)(CO)}2 compounds with carbon monoxide, the Pn2 units can be released, affording P4 in the case of the phosphorus‐containing species, and elemental arsenic in the case of (μ222‐As2){Ni(IMes)(CO)}2.  相似文献   

20.
The novel 6‐ethyl‐4‐hydroxy‐2,5‐dioxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carboxaldehyde ( 2 ) was efficiently synthesized from Vilsmeier–Haack formylation of 3‐(1‐ethy1‐4‐hydroxy‐2‐oxo‐(1H)‐quinolin‐3‐yl)‐3‐oxopropanoic acid ( 1 ). The aldehyde 2 was allowed to react with some nitrogen nucleophiles producing a variety of hydrazones 3 – 7 . Reaction of aldehyde 2 with hydrazine hydrate and hydroxylamine hydrochloride afforded pyrazole and isoxazole annulated pyrano[3,2‐c]quinoline‐2,5(6H)‐dione, respectively. The reactivity of aldehyde 2 was examined toward some active methylene nitrile, namely, malononitrile, ethyl cyanoacetate, and cyanoacetamide leading to 2‐iminopyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines 10 – 12 , respectively. Also, some novel pyrazolo[4″,3″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 13 , 14 ) and thiazolo[5″,4″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 15 , 16 ) were synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号