首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protic ionic liquids (PILs) in solution especially in water have attracted more and more attention due to their unique properties. The solvation of PILs in water is important to their properties and applications. To explore the solvation of bio-based PILs in water, acidity of 49 [AA]X amino acid ionic liquids (AAILs) consisting of 7 different cations and 7 different anions was studied as a favorable probe. The pKa values for [AA]X PILs containing same cations were obtained and discussed. The acidity strength of the [AA]X PILs varies with both cation and anion which does not follow the conventional assumption that the acidity for PILs is independent of anions. The acidic discrepancy of [AA]X PILs aqueous solution is probably mediated by the formation of ion pairs according to a revised solvation model of PILs. Quantum-chemistry calculation was employed to unpuzzle anion's different effects on the acid balance of cations where cation-anion hydrogen bonds play an important role. Such difference in acidity allows us to understand the formation of solvated ion pairs. This work provides an insight into the fundamental solvation of PILs from acid perspective and their influence on acidity properties for the first time.  相似文献   

2.
3.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

4.
Properties of cellulose solutions in different direct dissolving liquids such as N-methylmorpholine-N-oxide and ionic liquids with varied cations and anions were investigated. The effects of different cations and anions of the used ionic liquids on the solution state were studied on the basis of the rheological characteristics of the resulting polymer solutions. The influence of these components is discussed in terms of zero shear viscosities, master curves with storage and loss moduli as well as complex viscosities using comparable molar ratios between cellulose and solvent and comparable polymer concentrations. Furthermore anisotropic properties of highly concentrated cellulose solutions were determined by means of polarised light microscopy and rheological methods subjected to the used solvent and variation of the polymer concentration as well as the temperature.  相似文献   

5.
Using molecular dynamics simulations, the structure of model mini‐protein was thoroughly characterized in the imidazolium‐based amino acid ionic liquids and their aqueous solutions. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini‐protein. This observation suggests that amino acid‐based ionic liquids are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini‐protein is efficiently solvated by both solvents due to a good mutual miscibility. Amino acid‐based anions prevail in the first coordination sphere of positively charged sites of the mini‐protein whereas water molecules prevail in the first coordination sphere of negatively charged sites of the mini‐protein. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Room-temperature ionic liquids (ILs) have potential for many different applications, including catalysis and synthesis. Organics are often present during IL applications; therefore, a more fundamental understanding of the interactions between IL and organics is necessary. A systematic study of the effects of organic cosolvents, cations, and anions on the solvent strength of IL/organic mixtures will allow for a greater understanding and potential for tuning of ILs for specific purposes. Solvent strength is commonly quantified using spectroscopic probes. We report the solvent strength of IL/organic mixtures using Reichardt's dyes 30 and 33, Kamlet-Taft parameters, and phenol blue. The results show that the polarity of ILs is largely unaffected by the organic cosolvent; that is, the probes are preferentially solvated by the ILs. However, more specific solvation forces, such as hydrogen bonding, can be influenced indirectly by the strength of the anion/cation interaction, giving counterintuitive results.  相似文献   

7.
We present for the first time Gutmann donor and acceptor numbers for a series of 36 different ionic liquids that include 26 distinct anions. The donor numbers were obtained by (23) Na?NMR spectroscopy and show a strong dependence on the anionic component of the ionic liquid. The donor numbers measured vary from -12.3?kcal?mol(-1) for the ionic liquid containing the weakest coordinative anion [emim][FAP] (1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate), which is a weaker donor than 1,2-dichloroethane, to 76.7?kcal?mol(-1) found for the ionic liquid [emim][Br], which exhibits a coordinative strength in the range of tertiary amines. The acceptor numbers were measured by using (31) P?NMR spectroscopy and also vary as a function of the anionic and cationic component of the ionic liquid. The data are presented and correlated with other solvent parameters like the Kamlet-Taft set of parameters, and compared to the donor numbers reported by other groups.  相似文献   

8.
Ionic liquids are neoteric, environmentally friendly solvents (since they do not produce emissions) composed of large organic cations and relatively small inorganic anions. They have favorable physical properties, such as negligible volatility and wide range of liquid existence. Moreover, many different cations and anions can be used to synthesize ionic liquid, so the properties can be designed by the use of selected combinations of anions and cations. Liquid–liquid equilibrium (LLE) data for systems including ionic liquids, although essential for the design and operation of separation processes, are still scarce. However, some recent studies have presented ternary LLE data involving several ionic liquids and organic compounds such as alkanes, alkenes, alkanols, water, ethers and aromatics. In this work, the ASOG model for the activity coefficient is used to predict the LLE for 11 binary and 17 ternary systems including the ionic liquid 1-alkyl-3-methylimidazolium hexafluorophosphate plus alkanes, alkenes, alkanols, ketones, carboxylic acids and aromatics. New group interaction parameters were determined by using a modified Simplex method, minimizing a composition-based objective function. The results are satisfactory, with rms deviations of about 4%.  相似文献   

9.
Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure–property relationships of such systems is hence desirable. One of the crucial molecular‐level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen‐bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium‐based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br]?, [NO3]?, [SCN]?, [BF4]?, [PF6]?, and [Tf2N]?. The structure of water and the water–ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen‐bond statistics. To this end, we employ the geometric criterion of the hydrogen‐bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN]? and [Tf2N]? were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.  相似文献   

10.
We use the Flory-Huggins theory to demonstrate conditions of extra solvent power of ionic liquids. The short-range interactions between anions, cations, and molecules of the solute are taken into account. We find that solvent power of the ionic liquids is enhanced if non-Coulomb interactions between the anions and cations are repulsive. The mechanism responsible for the extra solvent power is related to the "shielding" of the anion-cation interactions by the molecules of the solute.  相似文献   

11.
12.
The first examples of ionic liquids based on borenium cations, [BCl2L]+, are reported. These compounds form highly Lewis acidic liquids under solvent‐free conditions. Their acidity was quantified by determining the Gutmann acceptor number (AN). Extremely high ANs were recorded (up to AN=182, δ31P=120 ppm), demonstrating that these borenium ionic liquids are the strongest Lewis superacids reported to date, with the acidity enhanced by the ionic liquid environment.  相似文献   

13.
Density, refractive index, and dynamic viscosity of two new ionic liquids involving the 1-benzyl-3-methyl imidazolium cation and the common anions chloride and methylsulfate have been determined and correlated as a function of temperature. Volumetric properties for the ionic liquids are calculated from the density and the results are also enclosed. The Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, and Newton equations, as well as a modified Eykman were used to correlate satisfactorily the relation between the densities and refractive indices of the selected ionic liquids. The influence of the benzyl group on the density was compared with other alkyl imidazolium cations and the same anions.  相似文献   

14.
张利锋  杨四娟  高国华 《催化学报》2011,(12):1875-1879
以离子液体1-丁基-3-甲基咪唑乙酸盐([bmim]OAc)为催化剂,以芳香胺和碳酸丙烯酯为原料,一步合成了5-甲基-3-芳基噁唑烷-2-酮.系统考察了反应温度、反应时间以及催化剂用量对反应性能的影响.在优化的反应条件下,5-甲基-3-苯基噁唑烷-2-酮的收率可达99%.研究了离子液体阴阳离子结构对反应性能的影响,发现...  相似文献   

15.
翟翠萍  刘学军  王键吉 《化学进展》2009,21(5):1040-1051
室温离子液体作为一种绿色溶剂和功能材料,越来越引起人们的重视,其研究手段也越来越多。本文着重概述了核磁共振方法在测定离子液体的结构、纯度及性质,研究离子液体阴阳离子间的相互作用、离子液体与其他化合物的相互作用、离子液体及其在混合体系中的动力学特征、离子液体在溶液中的聚集行为,以及测定离子液体的热力学参数中的应用。  相似文献   

16.
Ionic liquids are low melting salts which represent a new class of non-molecular, ionic solvents. By combining different cations and anions a large number of liquids with very different physical and chemical properties can be obtained. It is possible to optimize the ionic medium for a specific application by the careful choice of the ion combination. Ionic liquids are interesting substitutes for organic solvent in catalytic reactions for many reasons: Besides their non-volatile nature offering significant engineering advantages, the unusual solubility properties of these liquids enable new multiphasic catalytic reactions.  相似文献   

17.
Ionic liquids are salts that are liquid at or near room temperature. Their wide liquid range, good thermal stability, and very low vapor pressure make them attractive for numerous applications. The general approach to creating ionic liquids is to employ a large, unreactive, low symmetry cation with and an anion that largely controls the physical and chemical properties. The most common cations used in ionic liquids are N-alkylpyridinium and N,N′-dialkylimidazolium. Another very effective cation for the creation of ionic liquids is tetraalkylphosphonium, [PR1R2R3R4]+. The alkyl groups, Rn, generally are large and not all the same. The halide salts of several phosphonium cations are available as starting materials for metathesis reactions used to prepare ionic liquids. The large phosphonium cations can combine with relatively large anions to make viscous but free flowing liquids with formula mass greater than 1000 g mol−1. Some other more massive salts are waxes and glasses. The synthesis and the physical, chemical, and optical properties of phosphonium-ionic liquids having anions with a wide range of masses were measured and are reported here.  相似文献   

18.
The sorption of CO2 is often used to modify the macroscopic properties of liquids and solids. In the particular case of ionic liquids, different from molecular liquids, the sorption of CO2 may not induce volume expansions due to the strong Coulombic interactions between the ions of the fluid. However, a considerable viscosity decrease has been systematically observed. In order to understand the mechanisms of properties modifications in ionic fluids, herein we used Raman spectroscopy to probe the effect of CO2 on the structure of ionic liquids. It is shown that CO2 perturbs the electrostatic interactions between cations and anions, thus inducing a change in the polar domain of ionic liquids. It is observed that ionic liquids having bulkier ions are more prone to be perturbed by CO2 in comparison to ionic liquids having smaller ions. These results reveal new means of controlling the electrostatic forces between the ions and contributes to the mechanistic understanding of the modification of the macroscopic properties of ionic liquids by CO2 sorption.  相似文献   

19.
王伟彬  银建中 《化学进展》2008,20(4):441-449
目前已知的绿色溶剂主要包括超临界流体(Supercritical fluids,SCFs)、离子液体(Ionic liquids,ILs)、二氧化碳膨胀液体(CO2 expanded liquids, CXLs)、水以及上述溶剂的混合物等。其中,由超临界CO2(Supercritical CO2,SCCO2)与ILs混合而构成的新兴溶剂,因为化学热力学方面的特性,成为近年来研究的热点,未来很有发展前景。本文回顾了目前为止在该领域所开展的工作,总结了影响SCCO2与IL相行为的主要因素。包括温度、压力、ILs的含水量、ILs的阴离子、ILs的阳离子、ILs的摩尔体积以及助溶剂等。同时分析了ILs/SCCO2与溶质形成的多元混合物相行为的成因。介绍了ILs/CO2在萃取、反萃取、膜分离、反胶束、萃取与反应耦合等分离方面的应用。由于传统的单元操作很难满足无污染和对过程集成的要求,因而含有ILs/ SCCO2的分离反应耦合过程将是未来是实现清洁生产的发展方向。  相似文献   

20.
Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl‐substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3‐hexafluoropropan‐2‐yl)oxy)borate [B(hfip)4]? anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号