首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer–Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4‐methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one‐pot procedure with the addition of a nucleophile to the resulting terminal enone, to give β‐aryl, β‐alkoxy, β‐amino or β‐sulfido ketones. Propargylic alcohols bearing an adjacent electron‐rich aryl group can also undergo silver‐catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt.  相似文献   

2.
The development and mechanistic investigation of a highly stereoselective methodology for preparing α‐linked‐urea neo‐glycoconjugates and pseudo‐oligosaccharides is described. This two‐step procedure begins with the selective nickel‐catalyzed conversion of glycosyl trichloroacetimidates to the corresponding α‐trichloroacetamides. The α‐selective nature of the conversion is controlled with a cationic nickel(II) catalyst, [Ni(dppe)(OTf)2] (dppe=1,2‐bis(diphenylphosphino)ethane, OTf=triflate). Mechanistic studies have identified the coordination of the nickel catalyst with the equatorial C2‐ether functionality of the α‐glycosyl trichloroacetimidate to be paramount for achieving an α‐stereoselective transformation. A cross‐over experiment has indicated that the reaction does not proceed in an exclusively intramolecular fashion. The second step in this sequence is the direct conversion of α‐glycosyl trichloroacetamide products into the corresponding α‐urea glycosides by reacting them with a wide variety of amine nucleophiles in presence of cesium carbonate. Only α‐urea‐product formation is observed, as the reaction proceeds with complete retention of stereochemical integrity at the anomeric C?N bond.  相似文献   

3.
A simple, efficient and environmentally benign solid acid catalyst was prepared by anchoring a propyl sulfonic acid on the surface of silica‐coated magnetic nanoparticles by low cost precursors. The catalyst has been then engaged in the efficient β‐amino carbonyl compounds production via three component Mannich reaction under solvent free reaction condition at room temperature. After the completing the reaction, the catalyst was readily separated by external magnet and reused for 10 successive rounds of reaction, without any significant loss in catalytic efficiency. The solid acidic system presented reusable strategy for the efficient synthesis of β‐amino carbonyl compounds, simplicity in operation, and green aspects by avoiding toxic conventional catalysts under solvent‐free condition.  相似文献   

4.
A carbene‐catalyzed intermolecular C−N bond formation, which initiates a highly selective cascade reaction for the synthesis of pyrrolidine fused β‐lactones, is disclosed. The nitrogen‐containing bicyclic β‐lactone products are obtained with good yields and excellent stereoselectivities. Synthetic transformations of the reaction products into useful functional molecules, such as amino catalysts, can be efficiently realized under mild reaction conditions. Mechanistically, this study provides insights into modulating the reactivities of heteroatoms, such as nitrogen atoms, in challenging carbene‐catalyzed asymmetric carbon–heteroatom bond‐forming reactions.  相似文献   

5.
An anti‐selective Mannich reaction of aldehydes with N‐sulfonyl imines has been developed by using a 4‐hydroxypyrrolidine in combination with an external Brønsted acid. The catalyst design is based on three elements: the α‐substituent of the pyrrolidine, the 4‐hydroxy group, and the Brønsted acid, the combination of which is essential for high chemical and stereochemical efficiency. The reaction works with aromatic aldehyde‐derived imines, which have rarely been employed in previously reported enamine‐based anti‐Mannich reactions. Additionally, both N‐tosyl and N‐nosyl imines can be successfully used and the Mannich adducts can be easily reduced or oxidized, and after N‐deprotection the corresponding β‐amino acids and β‐amino alcohols can be obtained with good yields. The results also show that this ternary catalytic system may be practical in other enamine‐based reactions.  相似文献   

6.
Introduction1,4 Dihydropyridinesofthenifedipinetype (e .g .I—III)arethemoststudiedclassoforganiccalciumchannelmedicine ,whichhavebecomealmostindispens ableforthetreatmentofcardiovasculardiseasessuchashypertension ,cardiacarrhythmias ,orangina .1Inthepastdecade…  相似文献   

7.
Multicomponent reactions are a very powerful tool for the construction of complex organic molecules by using readily available starting materials. While most of the multicomponent reactions discovered so far consist of three components, the reactions with four or more components remain sparse. We have successfully developed several four‐component reactions using a catalytic amount of water as a hydrolyzing agent to decompose byproduct chlorotrimethylsilane (TMSCl) to yield secondary byproduct HCl that serves as a catalyst. In the presence of 40 mol % of water, the four‐component reaction of aldehydes with hexamethyldisilazane (HMDS), chloroformates, and silylated nucleophiles proceeds smoothly at room temperature to give a range of protected primary amines in moderate to excellent yields. Importantly, a wide variety of protic carbon nucleophiles, such as β‐keto esters, β‐diketones, and ketones, have further been explored as suitable substrates for the synthesis of protected β‐amino esters and β‐amino ketones that are useful building blocks for various pharmaceuticals and natural products. These four‐component reactions proceed through a pathway of tandem nitrogen protection/imine formation/imine addition, and the decomposition of byproduct TMSCl, generated in the first step of nitrogen protection, with water results in the formation of secondary byproduct HCl, a strong Brønsted acid that catalyzes the following imine formation/imine addition. Taking advantage of the fact that alcohols or phenols are also able to decompose byproduct TMSCl to yield secondary byproduct HCl, no catalyst is needed at all for the four‐component reactions with aldehydes bearing hydroxy groups.  相似文献   

8.
An intramolecular domino process consisting of a formal anti‐carbopalladation followed by Heck reaction is realized. Complex oligo(hetero)cyclic scaffolds are efficiently obtained in one synthetic step from easily obtainable enyne precursors. In contrast to common syn‐carbopalladation reactions of alkyne units, the carbopalladation employed here is designed to afford an anti‐arrangement of the two new substituents across the emerging double bond. A prerequisite is that the residues next to the alkyne should lack any β‐hydrogen atoms. The method paves the way to tri‐ and tetrasubstituted double‐bond systems that have not been accessible by conventional Pd catalysis.  相似文献   

9.
A highly enantioselective method (up to 98 % ee) for the preparation of β‐amino alcohols was achieved by using the readily available proline‐tetrazole as the catalyst for the N‐nitroso aldol reaction of aldehydes with in situ generated nitrosocarbonyl compounds. The key to success of this reaction is the use of MnO2 as an oxidant and catechol as a Brønsted acid additive.  相似文献   

10.
The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for C?C bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)‐cyclooctadiene complexes having a NHC ligand with a O‐ or N‐functionalised wingtip efficiently catalysed the oxidation and β‐alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3)(cod)(MeIm(2‐ methoxybenzyl))][BF4] (cod=1,5‐cyclooctadiene, MeIm=1‐methylimidazolyl) having a rigid O‐functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0) of 1283 h?1, and also in the β‐alkylation of 2‐propanol with butan‐1‐ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan‐2‐ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross‐aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new C?C bond that involves the reaction of an O‐bound enolate generated in the basic medium with the electrophilic aldehyde.  相似文献   

11.
A new tunable phosphine‐catalyzed aza‐Michael β‐addition reaction between allenoates and various hydrazones has been developed. These reactions are most‐efficiently promoted by a catalytic amount of phosphine catalysts. These atom‐economical reactions are operationally simple and their corresponding adducts can been achieved in high yields and high selectivity under mild reaction conditions. Further studies revealed that different phosphine catalyst can produce different adducts from the same starting materials.  相似文献   

12.
The abundant sesquiterpene β‐caryophyllene can be epoxidized by molecular oxygen in the absence of any catalyst. In polar aprotic solvents, the reaction proceeds smoothly with epoxide selectivities exceeding 70 %. A mechanistic study has been performed and the possible involvement of free radical, spin inversion, and electron transfer mechanisms is evaluated using experimental and computational methods. The experimental data—including a detailed reaction product analysis, studies on reaction parameters, solvent effects, additives and an electrochemical investigation—all support that the spontaneous epoxidation of β‐caryophyllene constitutes a rare case of unsensitized electron transfer from an olefin to triplet oxygen under mild conditions (80 °C, 1 bar O2). As initiation of the oxygenation reaction, the formation of a caryophyllene‐derived radical cation via electron transfer is proposed. This radical cation reacts with triplet oxygen to a dioxetane via a chain mechanism with chain lengths exceeding 100 under optimized conditions. The dioxetane then acts as an in situ‐formed epoxidizing agent. Under nitrogen atmosphere, the presence of a one‐electron acceptor leads to the selective isomerization of β‐caryophyllene to isocaryophyllene. Observations indicate that this isomerization reaction is a novel and elegant synthetic pathway to isocaryophyllene.  相似文献   

13.
Sc(III) triflate efficiently catalyzes the three‐component condensation reaction of an aldehyde, a β‐ketoester, and urea in refluxing acetonitrile to afford the corresponding 3,4‐dihydropyrimidin‐2(1H)‐ones in excellent yields. The catalyst can be recovered and reused, making this method friendly and environmentally acceptable.  相似文献   

14.
A mechanistic study was performed on the Rh‐catalyzed stereoselective C?C/C?H activation of tert‐cyclobutanols. The present study corroborated the previous proposal that the reaction occurs by metalation, β‐C elimination, 1,4‐Rh transfer, C?O insertion, and a final catalyst‐regeneration step. The rate‐determining step was found to be the 1,4‐Rh transfer step, whereas the stereoselectivity‐determining step did not correspond to any of the aforementioned steps. It was found that both the thermodynamic stability of the product of the β‐C elimination and the kinetic feasibility of the 1,4‐Rh transfer and C?O insertion steps made important contributions. In other words, three steps (i.e., β‐C elimination, 1,4‐Rh transfer, and C?O insertion) were found to be important in determining the configurations of the two quaternary stereocenters.  相似文献   

15.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

16.
Lewis acids catalyzed highly efficient one‐pot three component coupling of β‐naphthol, benzaldehydes and urea to produce 1‐aryl‐1,2‐dihydro‐naphtho[1,2‐e][1,3]oxazin‐3‐one derivatives under solvent free conditions is described. Mechanistic studies confirmed that product formation is possible only at very high temperature (140–150°C) and at lower temperature (90–100°C) formation of 14‐aryl‐14H‐dibenzo(a,j)xanthenes was observed. Among the nine Lewis acids screened, iodine, P2O5 and Yb(OTf)3 are found to be most effective catalyst for this multicomponent reaction.  相似文献   

17.
Dynamic kinetic asymmetric transformations (DyKAT) of racemic β‐bromo‐α‐keto esters by direct aldolization of nitromethane and acetone provide access to fully substituted α‐glycolic acid derivatives bearing a β‐stereocenter. The aldol adducts are obtained in excellent yield with high relative and absolute stereocontrol under mild reaction conditions. Mechanistic studies determined that the reactions proceed through a facile catalyst‐mediated racemization of the β‐bromo‐α‐keto esters under a DyKAT Type I manifold.  相似文献   

18.
A series of novel isoxazolyl‐4‐(2‐oxo‐2,3‐dihydro‐1H‐3‐indolyl)pyrrole‐3‐carboxylates ( 17a – i) were synthesized by a three‐component reaction of 4‐amino‐3‐methyl‐5‐styrylisoxazole 14 , β‐keto ester 15 , and 3‐phenacylideneoxindole 16 , in the presence of CAN catalyst in ethanol. The structures of the synthesized compounds have been established on the basis of spectral and analytical data. The title compounds 17a – i were evaluated for their anti‐inflammatory activity. Compounds 17b and 17c exhibited potent anti‐inflammatory activity as that of standard drug.  相似文献   

19.
20.
Dedicated to Professor Jean Morel for his retirement The title compounds 4 have been prepared from suitable β‐amino‐ alcohol 2 and phthalic anhydride ( 5 ) in a three‐step sequence in moderate to good yields (58‐94%). The key step of this methodology is based on an intramolecular O‐cationic cyclization involving N‐acyliminium species. The high levels of the observed chemoselectivity during the intermolecular or intramolecular cyclization were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号