共查询到20条相似文献,搜索用时 0 毫秒
1.
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (${\mu _{\rm{O}} }$ ), the vacancy formation and adsorption energies were determined as a function of ${\mu _{\rm{O}} }$ . Under oxygen‐rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen‐poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies. 相似文献
2.
Solvent‐Dependent Structure of the I3− Ion Derived from Photoelectron Spectroscopy and Ab Initio Molecular Dynamics Simulations 下载免费PDF全文
Dr. Naresh K. Jena Ida Josefsson Dr. Susanna K. Eriksson Prof. Anders Hagfeldt Prof. Hans Siegbahn Prof. Olle Björneholm Prof. Håkan Rensmo Dr. Michael Odelius 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(10):4049-4055
Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3? ion in relation to X‐ray photoelectron spectroscopy (XPS). Simulations show that hydrogen‐bond rearrangement in the solvation shell is coupled to intramolecular bond‐length asymmetry in the I3? ion. By a combination of charge analysis and I 4 d core‐level XPS measurements, the mechanism of the solvent‐induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent‐dependent structure of the I3? ion, and the geometric structure has been correlated with the electronic structure. 相似文献
3.
Dr. Gábor Kovács Dr. András Stirling Prof. Dr. Agustí Lledós Dr. Gregori Ujaque 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(18):5612-5619
First‐principles molecular dynamics coupled with metadynamics have been used to gain a deeper insight into the reaction mechanism of the Wacker process by determining the nature of the active species. An explicit and dynamic representation of the aqueous solvent, which was essential for modeling this reaction, was efficiently included into the simulations. Prompted by our earlier results, which showed that the configuration of the catalytically active species [PdCl2(H2O)(C2H4)] was crucial in the subsequent steps of the Wacker process, herein we focused on the preceding equilibria that led to the formation of both the cis and trans isomers. Starting from the initial catalyst, [PdCl4]2?, the free‐energy barriers for the forward and backward reactions were calculated. These results confirmed the relevance of the trans intermediate in the reaction mechanism, whilst conversely, they showed that the cis configuration played no role in it. This sole participation of the trans intermediate has some very important implications; besides the mechanistic interpretation of the initial steps in the Wacker reaction mechanism, the analysis of these equilibria provides additional information about the chemical nature of these ligand‐substitution processes. 相似文献
4.
5.
《Chemphyschem》2003,4(4):366-372
The atmospheric reaction NH2+O3→H2NO+O2 has been investigated theoretically by using MP2, QCISD, QCISD(T), CCSD(T), CASSCF, and CASPT2 methods with various basis sets. At the MP2 level of theory, the hypersurface of the potential energy (HPES) shows a two step reaction mechanism. Therefore, the mechanism proceeds along two transition states (TS1 and TS2), separated by an intermediate designated as Int. However, when the single‐reference higher correlated QCISD and the multiconfigurational CASSCF methodologies have been employed, the minimum structure Int and TS2 are not found on the HPES, which thus confirms a direct reaction mechanism. Single‐reference high correlated and multiconfigurational methods consistently predict the barrier height of the reaction to be within the range of 3.9 to 6.6 kcal mol?1, which is somewhat higher than the experimental value. 1 The calculated reaction enthalpy is ?67.7 kcal mol?1. 相似文献
6.
《Chemphyschem》2003,4(8):843-847
The atmospheric reaction (1) OH + O3→HO2 + O2 was investigated theoretically by using MP2, QCISD, QCISD(T), and CCSD(T) methods with various basis sets. At the highest level of theory, namely, QCISD, the reaction is direct, with only one transition state between reactants and products. However, at the MP2 level, the reaction proceeds through a two‐step mechanism and shows two transition states, TS1 and TS2 , separated by an intermediate, Int . The different methodologies employed in this paper consistently predict the barrier height of reaction (1) to be within the range 2.16–5.11 kcal mol?1, somewhat higher than the experimental value of 2.0 kcal mol?1. 相似文献
7.
8.
9.
Song L Wu W Hiberty PC Shaik S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(28):7458-7466
The recently developed (L. Song, W. Wu, Q. Zhang, S. Shaik, J. Phys. Chem. A 2004, 108, 6017) valence bond method coupled with a polarized continuum model (VBPCM) has been applied to the identity SN2 reaction of halides in the gas phase and in aqueous solution. The barriers computed at the level of the breathing orbital VB method (P. C. Hiberty, J. P. Flament, E. Noizet, Chem. Phys. Lett. 1992, 189, 259), BOVB and VBPCM//BOVB, are comparable to CCSD(T) and CCSD(T)//PCM results and to experimentally derived barriers in solution (W. J. Albery, M. M. Kreevoy, Adv. Phys. Org. Chem. 1978, 16, 85). The reactivity parameters needed to apply the valence bond state correlation diagram (VBSCD) method (S. Shaik, J. Am. Chem. Soc. 1984, 106, 1227), were also determined by VB calculations. It has been shown that the reactivity parameters along with their semiempirical derivations provide a satisfactory qualitative and quantitative account of the barriers. 相似文献
10.
Ab Initio and DFT Studies on CO2 Interacting with Znq+–Imidazole (q=0, 1, 2) Complexes: Prediction of Charge Transfer through σ‐ or π‐Type Models 下载免费PDF全文
Reda Boulmene Karim Boussouf Dr. Muthuramalingam Prakash Prof. Najia Komiha Dr. Muneerah M. Al‐Mogren Prof. Majdi Hochlaf 《Chemphyschem》2016,17(7):994-1005
Using first‐principles methodologies, the equilibrium structures and the relative stability of CO2@[Znq+Im] (where q=0, 1, 2; Im=imidazole) complexes are studied to understand the nature of the interactions between the CO2 and Znq+–imidazole entities. These complexes are considered as prototype models mimicking the interactions of CO2 with these subunits of zeolitic imidazolate frameworks or Zn enzymes. These computations are performed using both ab initio calculations and density functional theory. Dispersion effects accounting for long‐range interactions are considered. Solvent (water) effects were also considered using a polarizable continuum model approach. Natural bond orbital, charge, frontier orbital and vibrational analyses clearly reveal the occurrence of charge transfer through covalent and noncovalent interactions. Moreover, it is found that CO2 can adsorb through more favorable π‐type stacking as well as σ‐type hydrogen‐bonding interactions. The inter‐monomer interaction potentials show a significant anisotropy that might induce CO2 orientation and site‐selectivity effects in porous materials and in active sites of Zn enzymes. Hence, this study provides valuable information about how CO2 adsorption takes place at the microscopic level within zeolitic imidazolate frameworks and biomolecules. These findings might help in understanding the role of such complexes in chemistry, biology and material science for further development of new materials and industrial applications. 相似文献
11.
Marc‐Etienne Moret Ivano Tavernelli Dr. Majed Chergui Prof. Ursula Rothlisberger Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(20):5889-5894
Hybrid DFT/classical molecular dynamics of the long‐lived triplet excited state of [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) in aqueous solution is used to investigate the solvent‐mediated electron localization and dynamics in the triplet metal‐to‐ligand charge‐transfer (MLCT) state. Our studies reveal a solvent‐induced breaking of the coordination symmetry with consequent localization of the photoexcited electron on one or two bipyridine units for the entire length of our simulation, which amounts to several picoseconds. Frequent electronic “hops” between the ligands constituting the pair are observed with a characteristic time of approximately half a picosecond. 相似文献
12.
Melissa S. Caetano Teodorico C. Ramalho Douglas F. Botrel Elaine F. F. da Cunha Walclee Carvalho de Mello 《International journal of quantum chemistry》2012,112(15):2752-2762
Glyphosate is the active component of one of the top‐selling herbicides, which is also a potent EPSP synthase inhibitor. The herbicide is absorbed by living tissue and translocated via the phloem, to plant roots and rhizomes. When applied directly into the soil it has low activity, due to the high adsorption by soil constituents. Understanding the specific interactions between metals in the soil and glyphosate is the main step in understanding the low activity of the herbicide when applied directly into the ground and not pulverized. We can observe there is a stability order for both tetrahedral and octahedral complexes between glyphosate and metals: Zn>Cu>Co>Fe>Cr>Al>Ca>Mg. © 2012 Wiley Periodicals, Inc. 相似文献
13.
Ab initio calculations at the post Hartree–Fock level were performed on complexes of acetylene with hydrogen, nitrogen, and argon. Total energies, optimum geometries, and binding energies were calculated, using the 6-311G** and the 6-31+G(2df,2pd) basis sets. Calculations showed the complexes to be more stable than the separate entities, with the exception of the acetylene–hydrogen complex. 相似文献
14.
15.
Gerald H. Lushington Pablo J. Bruna Friedrich Grein 《International journal of quantum chemistry》1997,63(2):511-521
For the 2Σ+ ground states of the ions Li2+, Li2−, and Be2+, the dependence of the magnetic moment (parametrized by g-shifts) on the bond length R was studied at the ROHF level. The Δ g-values were calculated via a perturbative approach (complete to second order in Breit-Pauli interactions) using quadruple-zeta AO basis sets augmented by semidiffuse and polarization functions. All Δ g-values in these systems are negative. The parallel component Δ g∥ generally changes little with R, remaining close to the g-shift of the corresponding 2S atomic dissociation product. For Li2+ and Be2+, the perpendicular component Δ g ⟂ is more sensitive to geometry than is Δ g∥, mainly because of the second-order magnetic coupling with excited 2Π states. For Li2−, Δ g ⟂ and Δ g∥ are similar due to the large size of the 2σu, SOMO, resulting in g-values close to that of a free electron. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 511–521, 1997 相似文献
16.
Peifeng Su Fuming Ying Wei Wu Prof. Philippe C. Hiberty Prof. Sason Shaik Prof. 《Chemphyschem》2007,8(18):2603-2614
The recently developed (L. Song, W. Wu, Q. Zhang, S. Shaik, J. Phys. Chem. A 2004 , 108, 6017–6024) valence bond method coupled to a polarized continuum model (VBPCM) is applied to the Menshutkin reaction, NH3+CH3Cl→CH3NH3++Cl?, in the gas phase and in aqueous solution. The computed barriers and reaction energies at the level of the breathing orbital VB method (P. C. Hiberty, J. P. Flament, E. Noizet, Chem. Phys. Lett. 1992 , 189, 259), BOVB and VBPCM//BOVB, are comparable to CCSD(T) and CCSD(T)//PCM results and to experimental values in solution. The gas‐phase reaction is endothermic and leads to an ion‐pair complex via a late transition state. By contrast, the reaction in the aqueous phase is exothermic and leads to separate solvated ions as reaction products, via an early transition state. The VB calculations provide also the reactivity parameters needed to apply the valence bond state correlation diagram method, VBSCD (S. Shaik, A. Shurki, Angew. Chem. Int. Ed. 1999 , 38, 586). It is shown that the reactivity parameters along with their semiempirical derivations provide together a satisfactory qualitative and quantitative account of the barriers. 相似文献
17.
M. Hassan Khodabandeh Hamid Reisi Dr. Mehdi D. Davari Prof. Karim Zare Prof. Mansour Zahedi Prof. Gilles Ohanessian 《Chemphyschem》2013,14(8):1733-1745
Manganese is involved as a cofactor in the activation of numerous enzymes as well as the oxygen‐evolving complex of photosystem II. Full understanding of the role played by the Mn2+ ion requires detailed knowledge of the interaction modes and energies of manganese with its various environments, a knowledge that is far from complete. To bring detailed insight into the local interactions of Mn in metallopeptides and proteins, theoretical studies employing first‐principles quantum mechanical calculations are carried out on [Mn‐amino acid]2+ complexes involving all 20 natural α‐amino acids (AAs). Detailed investigation of [Mn‐serine]2+, [Mn‐cysteine]2+, [Mn‐phenylalanine]2+, [Mn‐tyrosine]2+, and [Mn‐tryptophan]2+ indicates that with an electron‐rich side chain, the most stable species involves interaction of Mn2+ with carbonyl oxygen, amino nitrogen, and an electron‐rich section of the side chain of the AA in its canonical form. This is in sharp contrast with aliphatic side chains for which a salt bridge is formed. For aromatic AAs, complexation to manganese leads to partial oxidation as well as aromaticity reduction. Despite multisite binding, AAs do not generate strong enough ligand fields to switch the metal to a low‐ or even intermediate‐spin ground state. The affinities of Mn2+ for all AAs are reported at the B3LYP and CCSD(T) levels of theory, thereby providing the first complete series of affinities for a divalent metal ion. The trends are compared with those of other cations for which affinities of all AAs have been previously obtained. 相似文献
18.
Hao Sun Dr. Hongqing He Dr. Jingyao Liu Prof. Zesheng Li Prof. Xiumei Pan Dr. Rongshun Wang Prof. 《Chemphyschem》2008,9(6):847-853
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values. 相似文献
19.