首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperbranched fluorocopolymers were synthesized by the atom transfer radical self‐condensing vinyl copolymerization (ATR–SCVCP) of an inimer, either p‐chloromethylstyrene (CMS) or p‐bromomethylstyrene (BMS), with 2,3,4,5,6‐pentafluorostyrene (PFS), with 2,2′‐bipyridine together with CuCl or CuBr as the ligand/catalyst system. The reaction conditions were studied to provide for control over the copolymer compositions, molecular weights, degrees of branching, and properties, as characterized by 1H, 13C, and 19F NMR spectroscopy, gel permeation chromatography, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and solubility tests. Copolymers having number‐average molecular weights from 2.9 to 260 kDa and polydispersities (weight‐average molecular weight/number‐average molecular weight) from 1.8 to 4.8 were obtained. The molar fractions of PFS units increased with increases in the feed ratio of PFS to the inimer. The degrees of branching were typically about 30% with the feed of 1.0 or 2.0 equiv of PFS with respect to the inimer, although slight variations could be achieved through the variation of the inimer composition. Under similar reaction conditions with CuCl as the catalyst, ATR–SCVCP of BMS with PFS led to higher degrees of branching than ATR–SCVCP of CMS with PFS. Solubility tests indicated that the polymers prepared under conditions that avoided extensive biradical coupling were soluble in a broad range of organic solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4754–4770, 2005  相似文献   

2.
A robust heterogeneous self‐supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine‐cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self‐supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium‐alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed‐bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h?1 were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three‐component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α‐branched aliphatic aldehyde by using the three‐component continuous Strecker reaction.  相似文献   

3.
The adsorption behavior of proline under hydrophilic interaction chromatography conditions was investigated from six aqueous solutions of acetonitrile. Proline adsorption isotherms were recorded at each mobile phase composition by frontal analysis and inverse method. The BET model was found to be the best choice to describe the nonlinear behavior of proline adsorption under hydrophilic interaction chromatography conditions. The adsorption isotherm parameters were derived from two independent parameter estimation methods. The parameters derived from regression analysis of the frontal analysis data and from overloaded elution bands were found to be in good agreement with the excess isotherm of water. The mobile phase composition at which the maximum excess adsorption of water was observed corresponded to the maximum saturation capacity measured for proline.  相似文献   

4.
A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica‐C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o‐phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets.  相似文献   

5.
A powerful new continuous process for the formation and use of donor/acceptor‐substituted carbenes is described. The safety profile of diazo group transfer on methyl phenylacetate was determined including kinetic studies in batch and in flow using in‐line IR analysis. Batch work‐up and liquid chromatography were circumvented by developing an optimized liquid/liquid flow separation method providing aryl diazoacetates in high purity. Fast screening of reaction conditions in flow with in‐line IR analysis allowed rapid reaction optimization. Finally, a multistep process of diazo group transfer, extraction, separation and subsequent diazo decomposition combined with multiple X?H insertion reactions was established.  相似文献   

6.
The formation of spatiotemporal patterns is investigated by using a chemical reaction on the surface of a high‐aspect‐ratio metal electrode positioned in a flow channel. A partial differential equation model is formulated for nickel dissolution in sulfuric acid in a microfluidic flow channel. The model simulations predict oscillatory patterns that are spatially distributed on the electrode surface; the downstream portion of the metal surface exhibits large‐amplitude, nonlinear oscillations of dissolution rates, whereas the upstream portion displays small‐amplitude, harmonic oscillations with a phase delay. The features of the dynamical response can be interpreted by the dependence of local dynamics on the widely varying surface conditions and the presence of strong coupling. The patterns can be observed for both contiguous and segmented metal surfaces. The existence of spatially distributed current oscillations is confirmed in experiments with Ni electrodissolution in a microfluidic device. The results show the impact of a widely heterogeneous environment on the types of patterns of chemical reaction rates.  相似文献   

7.
A novel continuous flow system for automated high‐throughput screening, autonomous optimization, and enhanced process control of polymerizations was developed. The computer‐controlled platform comprises a flow reactor coupled to size exclusion chromatography (SEC). Molecular weight distributions are measured online and used by a machine‐learning algorithm to self‐optimize reactions towards a programmed molecular weight by dynamically varying reaction parameters (i.e. residence time, monomer concentration, and control agent/initiator concentration). The autonomous platform allows targeting of molecular weights in a reproducible manner with unprecedented accuracy (<2.5 % deviation from pre‐selected goal) for both thermal and light‐induced reactions. For the first time, polymers with predefined molecular weights can be custom made under optimal reaction conditions in an automated, high‐throughput flow synthesis approach with outstanding reproducibility.  相似文献   

8.
The Ce(IV)-ion induced grafting on cellulose from the binary mixture of acrylonitrile-methylacrylate has been investigated in heterogeneous and acidic conditions at 25 ± 0. 1°C. Various grafting parameters were evaluated as a function of molarity, feed composition, reaction time, and concentration of ceric ion at constant concentration of nitric acid in the feed. The higher fraction of acrylonitrile in the grafted chains than the feed has indicated the synergistic effect of methylacrylate taken in the feed along with acrylonitrile. IR and elemental analysis for nitrogen contents in the synthesized copolymers were used to determine the composition of the grafted copolymers. The reactivity ratios of acrylonitrile and methylacrylate have been determined by the Mayo and Lewis method and are found to be 1.45 and 0.9, respectively. The grafting parameters have shown increasing trends on varying feed composition (fAN) from 0.25 to 0.80 and varying monomer concentration from 0. 6 to 5 4 mol dm?3. The number of grafted moles of synthetic polymer (Ng) on cellulose were found to be dependent on molarity, feed composition, and ceric ion concentration. The experimental results have clearly indicated that maximum fraction of the feed was consumed in the formation of grafted copolymer chains in comparison to the homocopolymers and homopolymers. Estimation of ceric ion disappearance as a function of reaction time has clearly suggested that grafting on cellulose is initiated by the reactive sites generated through hydrogen ion abstraction by single electron transfer process.  相似文献   

9.
Reported is the electrophilic amination of functional organolithium intermediates with well‐designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C?N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped‐flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work‐up. Integrated one‐flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time.  相似文献   

10.
Mesoporous graphitic carbon nitride (mpg‐C3N4) was found to be an efficient heterogeneous photocatalyst for the metal‐free radical cyclization of 2‐bromo‐1,3‐dicarbonyl compounds. Reactions leading to functionalized cyclopentanes proceed under mild conditions and can be conducted in a continuous flow photoreactor. Compared to the batch reaction, the use of a continuous flow reactor resulted in a significant reduction in reaction time (complete conversion of 0.04 mmol of substrate in a batch was achieved after 4 h, whereas in a flow reactor the same amount of substrate was fully converted into a product within 40 min). Mechanistic studies of the reaction showed that THF plays not only the role of solvent, but is also a crucial hydrogen and electron donor.  相似文献   

11.
Two kinds of applicable polymeric pH indicators were synthesized by the reaction of phenolphthalein and o‐cresolphthalein with formaldehyde under alkaline conditions by a one‐pot method. The synthesized products were fully characterized with Fourier transform infrared, 1H NMR, ultraviolet–visible spectroscopy, and gel permeation chromatography. The results indicated that the reaction was a typical phenol formaldehyde reaction. The dosage of formaldehyde and the reaction time were well controlled to obtain soluble polymers, instead of crosslinked products. The polymeric‐pH‐indicator‐immobilized poly(vinyl alcohol) (PVA) membranes were easily fabricated and had good long‐term stability under highly basic conditions and a fast equilibrium response. Moreover, the phenolphthalein formaldehyde immobilized PVA membrane had a linear response from pH 10.0 to 14.0, and so it has promise as a optical transducer for high pH value determinations. The o‐cresolphthalein formaldehyde immobilized PVA membrane had a nonlinear response from pH 9.0 to 13.0. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1019–1027, 2005  相似文献   

12.
温和条件下,燃油深度脱硫一直是非常重要的研究课题.目前,加氢脱硫(HDS)是石油工业上广泛采用的脱硫技术,它能够有效脱除燃油中的硫醚、硫醇和等无机硫化物,但对于芳香族硫化物(如二苯并噻吩、4,6-二甲基二苯并噻吩等),则效果较差.对于上述有机硫化物的深度脱除,现有的加氢脱硫技术需要更为苛刻的反应条件,如高温、高压、高活性贵金属催化剂等,这势必导致燃油成本的大幅上升.因此,世界各国科学家都加强了高效非加氢脱硫方法的研究,主要包括氧化脱硫法、吸附脱硫法、萃取脱硫法和生物脱硫法等,其中氧化脱硫法是一种公认的具有应用前景的高效脱硫技术,该技术只需在常温常压下进行,可将含硫化合物氧化成其相应的砜类物质后,再用溶剂萃取法或吸附法除去.氧化脱硫反应中所涉及氧化剂有过氧化氢、有机过氧化物和氧气等.在这些氧化剂中,过氧化氢由于其活性高,在氧化反应后的副产物只有水,而被广泛研究.
  离子液体作为一种低温熔融盐,因其独特的理化性质,如无蒸气压、低毒性、良好的溶解性以及结构可调等,受到了广泛的关注.其中,功能化多酸基离子液体不仅具备离子液体的特点,还具备多金属氧酸盐的优势,已被用于燃油的均相氧化脱硫过程中.但是,此过程中离子液体往往用量较大,催化剂难于回收和循环利用,氧化剂用量较大,阻碍其在工业中的应用.为了克服上述缺点,本课题组以多酸基离子液体[C16mim]3PW12O40和正硅酸四乙酯为原料通过溶胶-凝胶法直接合成了一系列含钨功能化介孔复合材料 W-SiO2,其中咪唑型阳离子作为介孔模板剂,而多酸阴离子作为金属源.采用 XRD, IR, Raman, BET, DRS, TEM等测试手段对所合成的材料进行了表征.结果表明,钨活性物种是以氧化钨的形式存在,并且能够均匀地分散在载体二氧化硅上,所合成的材料比表面积为513–743 m2/g,孔体积为0.37–0.50 cm3/g,孔径为2.91–3.20 nm.将所合成的材料 W-SiO2-20应用于燃油氧化脱硫反应(过程中无需有机溶剂),结果表明,所合成的复合材料既能作为吸附剂来吸附有机硫化物,又能作为催化剂来活化过氧化氢以氧化有机硫化物.在最优条件(反应温度60oC, O/S摩尔比为2.5,反应时间40 min)下,二苯并噻吩脱除率可100%,而且反应体系易于循环使用,7次循环后脱硫率无明显降低.此外,还考察了复合材料在相同条件下对于不同硫化物的脱除效果,结果表明,反应活性顺序为4,6-DMDBT> DBT> BT> DT.  相似文献   

13.
Fluorinated copolymers with statistical structure of azeotropic or gradient composition were prepared from heterogeneous atom transfer radical copolymerizations of styrene (S) and 2,2,2‐trifluoroethyl methacrylate (T). The polymerization kinetic studies show that while the propagation rate constant of S increased with a decreasing S content in the comonomer feed ratio, the propagation rate of T decreased with decreases of the S content in the comonomer feed ratio. The polymerization rate and controllability of the heterogeneous ATRP of S and T were regulated by the solubility of Cu(II)/ligand in the reaction mixture, based on a mechanistic analysis and solubility tests of the Cu(II)/ligand system in the reaction media. The reactivity ratios of S and T were 0.22 and 0.35, as evaluated from kinetic analysis of monomer conversions higher than 35%. These statistical polymers self‐assembled in T to form giant vesicles GVs) with broad diameter distribution in the range of 1–10 μm. Unlike the methods normally used to prepare gradient copolymers by spontaneous controlling with feeding model or batch polymerization of comonomers with obvious differences in the reactivity ratio, in this contribution, we report a novel synthetic strategy for preparing gradient copolymers can also be prepared from both monomers with very similar reactivity ratio. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Studies of the phase‐equilibrium behavior of vinyl chloride (VCM)/n‐butane mixtures and the kinetics of VCM heterogeneous polymerization, using n‐butane as a reaction medium, were carried out using a 1‐L glass autoclave. The vapor composition was measured by gas chromatography, showing that the vapor pressure of the VCM/n‐butane mixture was located above the line connecting the points for pure VCM and n‐butane. The concentration of VCM in the vapor phase was greater than that in the corresponding liquid phase. It was confirmed that the presence of poly(vinyl chloride) (PVC) resin had no significant influences on the phase equilibrium of VCM/n‐butane mixtures. Thus, the phase‐equilibrium equations were applied to determine the conversion of VCM during heterogeneous polymerization. The conversions calculated from the variations of vapor pressure or composition agreed with those determined by the weighing method. The conversion–time and polymerization rate–time curves obtained for VCM heterogeneous polymerization showed that the polymerization accelerated at low initiator concentration, but the polymerization rate decreased with an increase of conversion at relatively high initiator concentrations. The chain‐transfer reaction to n‐butane was confirmed by a decrease of the molecular weight and broadening of the molecular weight distribution of PVC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2179–2188, 2001  相似文献   

15.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

16.
We used a Combustion Aerosol Standard burner unit that affords controlled and adjustable flame conditions, and adapted it for use with liquid fuel. We prepared samples of hexane soot under different well‐defined combustion conditions, and probed the chemical properties of hexane soot by using its heterogeneous interaction with NO2 in a Knudsen flow reactor. Soot generated under conditions of fuel to oxygen ratio near stoichiometry (λ = 0.82) produced HONO as the main product. Yields of HONO decreased for soot generated under lean conditions (λ = 0.16). Finally, NO was the principal product of the reaction for soot generated under extremely lean conditions (λ = 0.09) corresponding to the lower flammability limit. We may conclude that the combustion conditions determined surface properties gauged by the heterogeneous NO2–soot interaction. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 620–631, 2002  相似文献   

17.
A new heterogeneous catalyst, Cr(III) Schiff base‐containing layered double hydroxide, was synthesized using the intercalation method. The Cr(III) Schiff base complex derived from 2‐hydroxy‐1‐naphthaldehyde and 4‐aminobenzoic acid was intercalated into the layered double hydroxide. The synthesized materials were characterized using inductively coupled plasma atomic emission spectrometry, energy‐dispersive X‐ray analysis, scanning electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller surface area measurement, Fourier transform infrared spectroscopy, thermogravimetric analysis, diffuse reflectance UV–visible spectroscopy and electron paramagnetic resonance spectroscopy. The catalytic activity was investigated for the oxidation of ethylbenzene with tert‐butylhydroperoxide as an oxidant under solvent‐free conditions as well as with lower chromium concentrations. In the oxidation reaction, ethylbenzene was oxidized to acetophenone and benzaldehyde. The catalyst was recycled ten times without significant loss of catalytic activity. Leaching studies performed with hot filtration experiments showed that the chromium catalyst was heterogeneous in nature and stable under the reaction conditions.  相似文献   

18.
Liquid chromatographic assays were developed using a mixed‐mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve‐mediated column switching and was based upon a single high‐performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion‐exchange, (ii) mixed‐mode interactions under an applied dual gradient (reversed‐phase/ion‐exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed‐mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well‐resolved unknown peaks.  相似文献   

19.
A polysilane copolymer with reactive Si—H side groups was obtained through a homogeneous coupling reaction of dichlorodiphenylsilane with dichloromethylsilane. The reaction was carried out in a tetrahydrofuran (THF) solution of a sodium‐potassium alloy complex with 18‐crown‐6 with a well defined composition of alkali metal ion pairs (Mt+/crown ether, Mt) at –75°C. The product was characterized using 1H NMR, 13C NMR, FT‐IR and UV/Visible spectroscopies and gel permeation chromatography. The results were compared with those obtained by the heterogeneous coupling reaction of the same monomers.  相似文献   

20.
Different novel phthalazino[2,3‐b]phthalazine‐5,7,12,14‐tetraones were synthesized in a simple and environmentally benign method from the reaction of phthalic anhydrides with semicarbazide or thiosemicarbazide using montmorillonite K‐10 clay as solid heterogeneous acidic catalyst and microwaves under solvent‐free conditions in good yields and short reaction times. Products were characterized by the elemental analysis, IR, NMR, and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号