首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heptyl α‐D ‐mannoside (HM) is a strong inhibitor of the FimH lectin that mediates the initial adhesion of the uropathogenic Escherichia coli (E. coli) to the bladder cells. We designed a set of multivalent HM ligands based on carbohydrate cores with structural valencies that range from 1 to 7. The chemical strategy used to construct the regular hydrophilic structures consisted of the repetition of a critical glucoside fragment. A primary amino group was grafted at the sugar reducing end to couple the multimers to a fluorescent label. A one‐pot synthetic approach was developed to tether the ligands and the fluorescein isothiocyanate (FITC) probe to the scaffold simultaneously. Isothermal calorimetry with the monomeric FimH lectin revealed nanomolar affinities and saturation of all structurally available binding sites on the multivalent HM ligands. Direct titrations domain showed almost strict correlation of enthalpy–entropy compensation with increasing valency of the ligand, whereas reverse titration calorimetry demonstrated negative cooperativity between the first and the second binding site of the divalent heptyl mannoside. A multivalency effect was nevertheless observed by inhibiting the haemagglutination of type‐1 piliated UTI89 E. coli, with a titer as low as 60 nM for the heptavalent HM ligand. An FITC‐labeled HM trimer showed capture and cross‐linking of living bacteria in solution, a phenomenon not previously described with low‐valency ligands.  相似文献   

2.
The separation and migration behavior of six isomeric dichlorophenols (DCPs) in cyclodextrin‐modified capillary zone electrophoresis (CD‐CZE) using a phosphate‐borate buffer at alkaline pH with β‐CD and hydroxypropyl‐β‐CD (HP‐β‐CD) as electrolyte modifiers were investigated. The influence of buffer pH and the concentration of β‐cyclodextrins were examined. The results indicate that baseline separation of six isomeric DCPs can be achieved with addition of β‐CD concentration in the range of 2.0‐10 mM or HP‐β‐CD concentration in the range of 4.0‐10 mM at pH 10.0. Binding constants of DCPs to β‐CDs were evaluated for a better understanding of the interaction of DCPs with β‐CDs.  相似文献   

3.
Herein, we report the selective mono‐derivatization of heptakis[6‐deoxy‐6‐(2‐aminoethylsulfanyl)]‐β‐CD ( 1 ) through a guest‐mediated covalent capture strategy. The use of guests functionalized with cleavable linkers enables the installation of an amine‐orthogonal thiol group on the primary rim of 1 as a handle for further transformations to the β‐CD scaffold. Applying this methodology, two novel monoderivatized β‐CDs were obtained in good yield and high purity. Both of these monoacylated CDs were amenable to facile linker cleavage and further modification at the resulting thiol group. This methodology can be applied towards the synthesis heterofunctionalized β‐CD constructs for analyte sensing, drug delivery, and other applications.  相似文献   

4.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

5.
We report on the synthesis of an H‐shaped polymer bonding β‐cyclodextrin (β‐CD) at branch points and influences of attached β‐CD on physical properties. First, a poly(ethylene glycol)(PEG)‐based functional macroinitiator bearing two azidos and four chlorines at chain‐ends (PEG‐2N3(‐4Cl)) was prepared via terminal modification reactions. Then, PEG‐2N3(‐4Cl) was applied to initiate the atom transfer radical polymerization of N‐isopropylacrylamide, leading to the synthesis of an H‐shaped block polymer with PEG as the central chain and poly(N‐isopropylacrylamide) (PNIPAM) as side‐arms (PEG‐2N3(‐4PNIPAM)). Azido groups were at the branch points of the polymer. Finally, the click reaction between PEG‐2N3(‐4PNIPAM) and alkynyl monosubstituted β‐cyclodextrin (β‐CD) afforded another H‐shaped polymer with two β‐CDs bonding at the polymer branch points (PEG‐2CD(‐4PNIPAM)). The glass transition temperature (Tg) and lower critical solution temperature (LCST) of the H‐shaped polymer increased after the attachment of β‐CD. The self‐assembly and thermal responsive behaviors, as well as the encapsulation behaviors of PEG‐2CD(‐4PNIPAM) were also altered. When temperature was below the LCSTs, PEG‐2N3(‐2PNIPAM) dissolved in water molecularly, whereas PEG‐2CD(‐4PNIPAM) could self‐assemble into nano‐sized micelles. After the LCST transitions, PEG‐2N3(‐4PNIPAM) aggregated into micron‐sized unstable particles, whereas PEG‐2CD(‐4PNIPAM) transformed into PNIPAM‐cored nanomicelles. Besides, PEG‐2CD(‐4PNIPAM) can encapsulate doxorubicin below its LCST due to the formation of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
We report a novel, green hydrothermal‐synthesis route to well‐dispersed anatase TiO2 nanoparticles with particle sizes of 9–16 nm in the presence of β‐CD (β‐cyclodextrin). During the synthesis process, the CD‐containing synthesis mixture assembled in both longitudinal and latitudinal directions. Driven by the interaction between molecules, the β‐CDs assembled in the longitudinal direction to form long‐chain compounds, whereas in the latitudinal direction, they tended to form regular aggregates through coordination with the Ti species from the hydrolysis of tetrabutyl titanate. In view of the effect of the coordination and the steric hindrance of β‐CDs as a supramolecular shell, homogeneous nuclei and slow growth of TiO2 crystals during the synthesis process was observed, which was responsible for the formation of uniform TiO2 nanoparticles. The low β‐CD dosage and the high product yield (>90 %) demonstrated well the potential of this synthesis route in the large‐scale industrial production of anatase nanoparticles.  相似文献   

7.
A polyrotaxane in which β‐cyclodextrins (β‐CDs) are threaded onto a polyether chain was prepared by polycondensation of a β‐CD/bisphenol A (BPA) inclusion complex with aromatic dihalides. Two dihalides, with and without a side chain, were used. This polycondensation results in a polyrotaxane (or pseudopolyrotaxane for polymers without stoppers) with a 1:1 threading ratio when the side chain is present and 2:3 when there is none. The long side chain prevents dethreading of the macrocycles. The best yield and a good threading ratio were obtained when the polycondensation was performed by liquid?solid phase transfer catalysis without solvent (L/S PTC) using 2,5‐bi(iodomethyl)‐4‐methoxy‐(1‐octyloxy)benzene as dihalide. The 1H NMR and FTIR spectra show that the products consist of β‐CD and polyether. The 2D NOESY NMR spectrum shows that the polyether chains are included in the β‐CD cavity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4391–4399, 2009  相似文献   

8.
Highly conductive, crystalline, polymer electrolytes, β‐cyclodextrin (β‐CD)–polyethylene oxide (PEO)/LiAsF6 and β‐CD–PEO/NaAsF6, were prepared through supramolecular self‐assembly of PEO, β‐CD, and LiAsF6/NaAsF6. The assembled β‐CDs form nanochannels in which the PEO/X+ (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion.  相似文献   

9.
This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p‐sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with β‐CD and p‐sulfonic acid calix[6]arene was studied and binding constants were determined by 1H NMR spectroscopy [diffusion‐ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in β‐CD and p‐sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the β‐CD and p‐sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on β‐CD and p‐sulfonic acid calix[6]arene as the host molecules. Such host–guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The photophysical properties of 7‐(diethylamino) coumarin‐3‐carboxylic acid (7‐DCCA) were studied in cyclodextrins (α, β, γ,‐CDs), different neat solvents and solvent mixtures by using steady state absorption, emission and time‐resolved fluorescence spectroscopy. We have observed that with gradual increase in concentration of β‐CD the fluorescence quantum yield and lifetime decreased in a regular pattern whereas with gradual increase in concentration of γ‐CD the fluorescence quantum yield and lifetime gradually increased. With addition of urea, the fluorescence quantum yield and lifetime of 7‐DCCA in CDs increased. Binding constant calculation shows that 7‐DDCA forms 1:1 complex with β‐CD and with γ‐CD it forms 1:1 and 1:2 (guest:host) inclusion complex. We proposed that the dye molecule formed capping complex with β‐CD by means of hydrogen bonding and after addition of urea the hydrogen bonding network broke down and part of dye molecule entered inside the cavity of β‐CD. The photophysics of 7‐DCCA was studied in dioxane‐water mixture and ethylene glycol‐acetonitrile mixture to know the effect of polarity and viscosity of the media. The photophysics of 7‐DCCA was also studied in different neat solvents. It was found that the photophysics of 7‐DCCA depended on the structural feature of the solvents and solvent mixtures.  相似文献   

11.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

12.
A triethyleneglycol (TEG) chain, a linear peptide, and a cyclic peptide labeled with 7‐methoxycoumarin‐3‐carboxylic acid (MC) and 7‐diethylaminocoumarin‐3‐carboxylic acid (DAC) were used to thoroughly study Förster resonance energy transfer (FRET) in inclusion complexes. 1H NMR evidence was given for the formation of a 1:1 inclusion complex between β‐cyclodextrin (β‐CD) and the fluorophore moieties of model compounds. The binding constant was 20 times higher for DAC than for MC derivatives. Molecular modeling provided additional information. The UV/Vis absorption and fluorescence properties were studied and the energy transfer process was quantified. Fluorescence quenching was particularly strong for the peptide derivatives. The presence of β‐CDs reduced the FRET efficiency slightly. Dye‐labeled peptide derivatives can thus be used to form inclusion complexes with β‐CDs and retain most of their FRET properties. This paves the way for their subsequent use in analytical devices that are designed to measure the activity of matrix metalloproteinases.  相似文献   

13.
A new β‐CD derivative, heptakis [2,6‐di‐O‐pentyl‐3‐O‐(4′‐chloro‐5′‐pyridylmethyl)]‐β‐CD, was synthesized by the selective introduction of a pyridyl group on the 3‐positions of β‐CD. The chromatographic properties of the pyridyl β‐CD derivative were studied by using it as the stationary phase in capillary GC. The polarity of the prepared stationary phase was moderate, and the separation results demonstrated that the prepared stationary phase possessed excellent separation ability and chiral recognition for a wide range of analytes. Not only the aromatic positional isomers, such as o‐, m‐, p‐xylene and α‐, β‐naphthol isomers, but also some compounds with multi‐stereogenic centers, such as n‐(1‐methylpropyl)‐3‐(2,2‐dichloroethenyl)‐2,2‐dimethylcyclopropanecarboxamide and n‐(1‐methylpropyl)‐3‐(2‐chloro‐3,3,3‐trifluoropropenyl)‐2,2‐dimethylcyclopropanecarboxamide with three stereogenic centers including eight configurational isomers, were successfully separated. The results also indicated that the polarity of the β‐CD derivative, and the hydrogen bonding between the β‐CD derivative, and the analytes had a very important effect on separation.  相似文献   

14.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

15.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

16.
Protein cages are spherical hollow macromolecules that are attractive platforms for the construction of nanoscale cargo delivery vehicles. Human heavy‐chain ferritin (HHFn) is modified genetically to control the number and position of functional groups per cage. 24 β‐CDs are conjugated precisely to the modified HHFn in specific locations through thiol‐maleimide Michael‐type addition followed by copper(I)‐catalyzed azide/alkyne cycloaddition (CuAAC). The resulting human ferritins displaying β‐CDs (β‐CD‐C90 HHFn) can form inclusion complexes with FITC‐AD, which can slowly release the guest molecule reversibly in a buffer solution via non‐covalent β‐CD/AD interactions. β‐CD‐C90 HHFn can potentially be used as delivery vehicles for insoluble drugs.

  相似文献   


17.
A series of hydrophilic per‐6‐thio‐6‐deoxy‐γ‐cyclodextrins (CDs) were synthesized from per‐6‐iodo‐6‐deoxy‐γ‐CD. These new hosts are able to solubilize polycyclic aromatic guests in aqueous solution to much higher extents than native CDs. Phase‐solubility diagrams were mostly linear in accordance with both 1:1 and 1:2 CD–guest complexes in aqueous solution. The stoichiometry of the inclusion complexes was further investigated by fluorescence spectroscopy, which revealed very pronounced Stokes shifts typical for 1:2 complexes. This finding was further consolidated by quantum mechanical calculations of dimer formation of the guests and space‐filling considerations by using the cross‐sectional areas of the CDs and guests. The calculated dimerization energies correlated well with the binding free energies measured for the 1:2 complexes, and provided the main contribution to the driving force of complexation in the γ‐CD cavity.  相似文献   

18.
In the present work, the oxidation of acetaminophen in the absence and presence of eflornithine was electrochemically investigated by means of cyclic voltammetry at a glassy carbon electrode (GCE). Our results indicate that N‐acetyl‐p‐benzoquinone imine (NAPQI) produced from two‐electron electrochemical oxidation of acetaminophen participates in a Michael addition reaction with eflornithine via an ECE mechanism. This fact was used for the determination of eflornithine using differential pulse voltammetry (DPV) technique on the surface of β‐Cyclodextrin modified glassy carbon (β‐CD/GC) electrode. β‐CD/GC electrode was prepared through an electrodeposition procedure and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), Cyclic Voltammetry (CV), Field Emission Scanning Electron Microscopy (FESEM) and Energy‐dispersive X‐ray spectroscopy (EDS) techniques. Under optimum conditions, the β‐CD/GC electrode showed a good linearity as a function of the eflornithine concentration over the range from 5 to 100 μM with detection limit and quantification limit of 1.94 and 5.8 μM, respectively. Finally, the proposed protocol was confirmed to be successful in determination of eflornithine in human urine samples with good recovery, ranging from 97.2 % to 104.8 %.  相似文献   

19.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

20.
Complexations between three oridonin derivatives and β‐cyclodextrin (βCD) were studied by nuclear magnetic resonance (NMR) method. Job's plots for complexes were depicted by 1H NMR spectra chemical shifts, which proved the 1:1 stoichiometry inclusion complex formation between each derivative and βCD. Two‐dimensional rotating frame overhauser effect spectroscopy (2D ROESY) support the above conclusion and also proved that ring A of each oridonin derivative deeply enters into hydrophobic cavity from the wider rim and the other parts are outside the cavity. Apparent formation constants (Ka) of complexes between three oridonin derivatives and two CDs are calculated according to Scott's equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号