首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

2.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5‐bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish‐orange PL) in TbIII/EuIII‐mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

3.
Three new isostructural 3D lanthanide metal–organic frameworks (Ln‐MOFs), {H[LnL(H2O)]?2 H2O}n ( 1‐Ln ) (Ln=Eu3+, Gd3+ and Tb3+), based on infinite lanthanide‐carboxylate chains were constructed by employing an ether‐separated 5,5′‐oxydiisophthalic acid (H4L) ligand under solvothermal reaction. 1‐Eu and 1‐Tb exhibit strong red and green emission, respectively, through the antenna effect, as demonstrated through a combination of calculation and experimental results. Moreover, a series of dichromatic doped 1‐EuxTby MOFs were fabricated by introducing different concentrations of Eu3+ and Tb3+ ions, and they display an unusual variation of luminescent colors from green, yellow, orange to red. 1‐Eu with channels decorated by ether O atoms and the open metal sites displays good performance for CO2 capture and conversion between CO2 and epoxides into cyclic carbonates.  相似文献   

4.
Based on the isonicotinic acid (HIN=pyridine‐4‐carboxylic acid), seven lanthanide metal–organic frameworks (MOFs) with the formula [Ln(IN)2L] (Ln=Eu ( 1 ), Tb ( 2 ), Er ( 3 ), Dy ( 4 ), Ho ( 5 ), Gd ( 6 ), La ( 7 ), L=OCH2CH2OH) have been synthesized by mixing Ln2O3 with HIN under solvothermal conditions, and characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, infrared spectroscopy, and fluorescence spectroscopy. Crystal structural analysis shows that compounds 1–6 are isostructural, crystallize in a chiral space group P212121, whereas compound 7 crystallizes in space group C2/c. Nevertheless, they all consist of new intertwined chains. Simultaneously, on the basis of the above‐mentioned compounds, we have realized a rational design strategy to form the doped Ln MOFs [(EuxTb1?x)(IN)2L] (x=0.35 ( 8 ), x=0.19 ( 9 ), x=0.06 ( 10 )) by utilizing TbIII as the second “rare‐earth metal”. Interestingly, the photoluminescence of [(EuxTb1?x)(IN)2L] are not only adjustable by the ratios of Eu/Tb, but also temperature or excitation wavelength.  相似文献   

5.
Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3)2NH2]4[(Zn4dttz6)Zn3]?15 DMF?4.5 H2O, ( IFMC‐2 ; H3dttz=4,5‐di(1H‐tetrazol‐5‐yl)‐2H‐1,2,3‐triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4dttz6} served as a secondary building unit in IFMC‐2 . Furthermore, the metal cluster was connected by ZnII ions to give rise to a 3D open microporous structure. The lanthanide(III)‐loaded metal–organic framework (MOF) materials Ln3+@IFMC‐2 , were successfully prepared by using ion‐exchange experiments owing to the anionic framework of IFMC‐2 . Moreover, the emission spectra of the as‐prepared Ln3+@IFMC‐2 were investigated, and the results suggested that IFMC‐2 could be utilized as a potential luminescent probe toward different Ln3+ ions. Additionally, the absorption ability of IFMC‐2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC‐2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl.  相似文献   

6.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

7.
The TbIII compound [Tb(tci)(H2O)]n · n(DMF) ( 1 ) [H3tci = tri(2‐carboxythyl)isocyanurate, DMF = N,N′‐dimethylformamide] was synthesized by the reaction of terbium oxide, H3tci, and two drops of concentrated nitric acid in the presence of DMF and H2O. Single crystal X‐ray analysis reveals that it features a three‐dimensional (3D) framework based on infinite –Tb–COO–Tb– chains. The tci ligand in 1 links six different TbIII ions with its two carboxylate groups in μ2‐κ1O;κ2O,O′ mode and the third in μ2‐κ1O;κ1O′ mode. Thermal analysis reveals that it remains high thermal stability until 390 °C. Luminescence investigation shows that it emits characteristic green light of TbIII ions.  相似文献   

8.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5-bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish-orange PL) in TbIII/EuIII-mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

9.
Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on EuIII and TbIII complexes as visible emitters and NdIII, ErIII, and YbIII complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X‐ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X‐ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5Eu0.5(pfb)3(H2O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)?→Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved.  相似文献   

10.
The crystal structures of the LaIII, EuIII, and TbIII complexes of macrobicyclic [bpy.bpy.bpy] ligands, [La3+ ? 1 ]3 Cl? ( = 3- La), [Tb3+ ? 1 ]3 Cl? ( = 3- Tb), and [Eu3+ ? 2 ]3 C1? ( = 3- Eu), have been determined. They confirm the cryptate nature of these species, the cations being bound to the eight N-sites of the ligand. The macrobicycle presents two open faces, thus allowing additional coordination of two species, Cl? ions or H2O molecules, to the bound cations. These data provide structural support for the photophysical studies of the luminescent properties of the EuIII and TbIII cryptates, which indicated residual coordination of H2O molecules.  相似文献   

11.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

12.
A promising alternative strategy for designing mesoporous metal–organic frameworks (MOFs) has been proposed, by modifying the symmetry rather than expanding the length of organic linkers. By means of this approach, a unique MOF material based on the target [Zn8(ad)4] (ad=adeninate) clusters and C3‐symmetric organic linkers can be obtained, with trigonal microporous (ca., 0.8 nm) and hexagonal mesoporous (ca., 3.0 nm) 1D channels. Moreover, the resulting 446‐MOF shows distinct reactivity to transition and lanthanide metal ions. Significantly, the transmetalation of CoII or NiII on the ZnII centers in 446‐MOF can enhance the sorption capacities of CO2 and CH4 (16–21 %), whereas the impregnation of EuIII and TbIII in the channels of 446‐MOF will result in adjustable light‐emitting behaviors.  相似文献   

13.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

14.
Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1 ), Gd ( 2 ), and Eu ( 3 )] and {[Ln(αH? PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1′ ), Gd ( 2′ ), and Eu ( 3′ )] have been prepared by reacting LnIII ions with tricarboxylate‐perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3?) or closed‐shell (αH? PTMTC3?) character, respectively. X‐ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)?(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non‐coordinated guest‐solvent molecules as confirmed by the XRD structure of the guest‐free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH? PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal‐centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′ , although the LnIII‐ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2 ) and the {radical–radical} exchange interactions (in 3 ) were assessed by comparing the behaviors for the radical‐based coordination polymers 1 – 3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3 , ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2 .  相似文献   

15.
A series of isostructural compounds with formula [M(TCNQF4)2(H2O)6]TCNQF4 ? 3 H2O (M=Tb ( 1 ), Y ( 2 ), Y:Tb (74:26) ( 3 ), and Y:Tb (97:3) ( 4 ); TCNQF4= tetrafluorotetracyanoquinodimethane) were prepared and their magnetic properties investigated. Compounds 1 , 3 , and 4 show the beginning of a frequency‐dependent out‐of‐phase ac signal, and decreasing intensity of the signal with decreased concentration of TbIII ions in the diluted samples is observed. No out‐of‐phase signal was observed for 2 , an indication that the behavior of 1 , 3 , and 4 is indicative of slow paramagnetic relaxation of TbIII ions in the samples. A more detailed micro‐SQUID study at low temperature revealed an interplay between single‐molecule magnetic (SMM) behavior and a phonon bottleneck (PB) effect, and that these properties depend on the concentration of diamagnetic yttrium ions. A combination of SMM and PB phenomena was found for 1 , whereby the PB effect increases with increasing dilution until eventually a pure PB effect is observed for 2 . The PB behavior is interpreted as being due to the presence of a “sea of organic S=1/2 radicals” from the TCNQF4 radicals in these compounds. The present data underscore the fact that the presence of an out‐of‐phase ac signal may not, in fact, be caused by SMM behavior, particularly when magnetic metal ions are combined with organic radical ligands such as those found in the organocyanide family.  相似文献   

16.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

17.
A series of homoditopic ligands H2LCX (X=4–6) has been designed to self‐assemble with lanthanide ions (LnIII), resulting in neutral bimetallic helicates of overall composition [Ln2(LCX)3] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log β23 in the range 26–28 at pH 7.4) and display a metal‐ion environment with pseudo‐D3 symmetry and devoid of coordinated water molecules. The emission of EuIII, TbIII, and YbIII is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu2(LC5)3] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 μm of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co‐localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (λexc=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven EuIII and TbIII bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap ΔE(3ππ*–5DJ) and the sensitisation efficiency of the ligands.  相似文献   

18.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

19.
The synthesis of the C2‐symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine‐2,6‐dicarboxamide moieties linked by a xylene spacer and the formation of LnIII‐based (Ln=Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2? 1 3] in MeCN by means of a metal‐directed synthesis is described. By analyzing the metal‐induced changes in the absorption and the fluorescence of 1 , the formation of the helicates, and the presence of a second species [Ln2? 1 2] was confirmed by nonlinear‐regression analysis. While significant changes were observed in the photophysical properties of 1 , the most dramatic changes were observed in the metal‐centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [Lu2? 1 3], was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2? 1 3], [Eu2? 1 3], and [Tb2? 1 3].  相似文献   

20.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号