首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several carbazole‐based boron dipyrromethene (BODIPY) dyes were synthesized by organometallic approaches. Thiazole, benzothiazole, imidazole, benzimidazole, triazole, and indolone substituents were introduced at the 1‐position of the carbazole moiety, and boron complexation of each dipyrrin generated the corresponding compounds 1 , 2 a , and 3 – 6 . The properties of these products were investigated by UV/Vis and fluorescence spectroscopy, cyclic voltammetry, X‐ray crystallography, and DFT calculations. These compounds exhibited large Stokes shifts, and compounds 1 , 2 a , and 3 – 5 fluoresced both in solution and in the solid state. Complex 2 a showed the highest fluorescence quantum yield (ΦF) in the solid state, therefore boron complexes of the carbazole–benzothiazole hybrids 2 b – f , which had several different substituents, were prepared and the effects of the substituents on the photophysical properties of the compounds were examined. The fluorescence properties showed good correlation with the results of crystal‐packing analyses, and the dyes exhibited color‐tunable solid‐state fluorescence.  相似文献   

2.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

3.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

4.
5.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

6.
7.
The straightforward synthesis of a series of 3‐cyanoformazanate boron difluoride dyes is reported. Phenyl, 4‐methoxyphenyl and 4‐cyanophenyl N‐substituted derivatives were isolated and characterized by single‐crystal X‐ray crystallography, cyclic voltammetry, and UV/Vis spectroscopy. The compounds were demonstrated to possess tunable, substituent‐dependent absorption, emission, and electrochemical properties, which were rationalized through electronic structure calculations.  相似文献   

8.
Charged liquid droplets are typically generated by a high‐voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged—thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply.  相似文献   

9.
Synthetic strategies have been devised that allow the rational design and isolation of highly coloured boron dipyrromethene (BODIPY) dyes that absorb across much of the visible region. Each dye has an aryl polycycle (usually pyrene or perylene) connected to the central BODIPY core through a conjugated tether at the 3,5‐positions. Both mono‐ and difunctionalised derivatives are accessible, in certain cases containing both pyrene and perylene residues. For all new compounds, the photophysical properties have been recorded in solution at ambient temperature and in a glassy matrix at 77 K. The presence of the aryl polycycle(s) affects the absorption and emission maxima of the BODIPY nucleus, thereby confirming that these units are coupled electronically. Indeed, the band maxima and oscillator strengths depend on the conjugation length of the entire molecule, whereas there is no sign of fluorescence from the polycycle. As a consequence, the radiative rate constant tends to increase with each added appendage. The nature of the linkage (styryl, ethenyl, or ethynyl) also exerts an effect on the photophysical properties and, in particular, the absorption spectrum is perturbed in the region of the aryl polycycle. The perylene‐containing BODIPY derivatives absorb over a wide spectral range and emit in the far‐red region in almost quantitative yield. A notable exception to this generic behaviour is provided by the anthracenyl derivative, which exhibits charge‐transfer absorption and emission spectra in weakly polar media at ambient temperature. Regular BODIPY‐like behaviour is restored in a glassy matrix at 77 K. Overall, these new dyes represent an important addition to the range of strongly absorbing and emitting reagents that could be used as solar concentrators.  相似文献   

10.
A highly diastereoselective synthesis of methylenecyclobutanes possessing a quaternary stereocenter is reported, in which boron homologation of an easily‐generated cyclobutenylmetal species is performed, followed by an allylation reaction. Combining three steps in a one‐pot process further optimized the method, which afforded the expected adducts in excellent yields and stereoselectivity, starting from commercially available 4‐bromobutyne.  相似文献   

11.
12.
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins.  相似文献   

13.
The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m ?1 cm?1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.  相似文献   

14.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

15.
In this research, the synthesis of boron‐ketoiminate‐containing polymers is reported with large molecular weights ( = 20 000) and their optical properties are examined by UV–vis absorption and photoluminescence spectrometries. It is shown that the polymers exhibit strong emission both in the solution and solid states (Φ PL,THF = 0.46–0.80, Φ PL,film = 0.13–0.38). These optical properties can be explained by a donor–acceptor interaction between the boron ketoiminate and the electron‐donating comonomer such as fluorene or bithiophene. Furthermore, in the solid states, their emission colors can be successfully tuned from blue to orange by the substituents on the nitrogen atom with the difference of the steric hindrance (λ PL,THF = 464–546 nm, λ PL,film = 486–604 nm).

  相似文献   


16.
17.
Charge‐transfer (CT) assemblies of aromatic donor (D) and acceptor (A) molecules have recently gained attention as a promising material for organic electronics and ferroelectrics. Two major factors which govern their functions are the strength of CT interaction and their supramolecular nanostructuring. Here we present coronene‐naphthalenediimide (NDI)‐based novel D‐A pairs that form alternately stacked CT assemblies. Through systematic substitution of the NDI derivatives and studying their CT interactions with coronene, a clear understanding of the secondary forces responsible for controlling their association is gained. Finally, the use of CT‐based supramolecular amphiphiles for their nanostructural engineering into ordered one‐dimensional (1‐D) assemblies is demonstrated.  相似文献   

18.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

19.
20.
Tetranuclear, intensely blue‐coloured CuI complexes were synthesised in which two Cu2X3? units (X=Br or I) are bridged by a dicationic GFA (guanidino‐functionalised aromatic) ligand. The UV/Vis spectra show a large metal‐to‐ligand charge‐transfer (MLCT) band around 638 nm. The tetranuclear “low‐temperature” complexes are in a temperature‐dependent equilibrium with dinuclear CuI “high‐temperature” complexes, which result from the reversible elimination of two CuX groups. A massive thermochromism effect results from the extinction of the strong MLCT band upon CuX elimination with increasing temperature. For all complexes, quantum chemical calculations predict a small and method‐dependent energy difference between the possible electronic structures, namely CuI and dicationic GFA ligand (closed‐shell singlet) versus CuII and neutral GFA ligand (triplet or broken‐symmetry state). The closed‐shell singlet state is disfavoured by hybrid‐DFT functionals, which mix in exact Hartree–Fock exchange, and is favoured by larger basis sets and consideration of a polar medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号