首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

2.
The synthesis of poly(β‐alanine) by Candida antarctica lipase B immobilized as novozyme 435 catalyzed ring‐opening of 2‐azetidinone is reported. After removal of cyclic side products and low molecular weight species pure linear poly(β‐alanine) is obtained. The formation of the polymer is confirmed with 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The average degree of polymerization of the obtained polymer is limited to = 8 by its solubility in the reaction medium. Control experiments with β‐alanine as a substrate confirmed that the ring structure of the 2‐azetidinone is necessary to obtain the polymer.

  相似文献   


3.
This communication describes photoresponsive gels, prepared using ring‐opening metathesis polymerization (ROMP), that dissolve upon irradiation with ultraviolet light. Exposure of mixtures of norbornene‐type ROMP monomers and new photoreactive cross‐linkers comprising two norbornene units bound through a chain containing o‐nitrobenzyl esters (NBEs) to well‐known ruthenium carbene catalysts gave cross‐linked polymer networks that swelled in organic solvents or water depending on the structure of the monomer. These gels became homogeneous upon irradiation with UV light, consistent with breaking of the cross‐links through photolysis of the NBE groups. The irradiation time required for homogenization of the gels depended on the cross‐link density and the structure of the photoresponsive cross‐linker.

  相似文献   


4.
A series of RuIV–alkylidenes based on unsymmetrical imidazolin‐2‐ylidenes, that is, [RuCl2{1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHPh)(pyridin)] (R=CH2Ph ( 5 ), Ph ( 6 ), ethyl ( 7 ), methyl ( 8 )), have been synthesized. These and the parent initiators [RuCl2(PCy3){1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHC6H5)] (R=CH2C6H5 ( 1 ), C6H5 ( 2 ), ethyl ( 3 )) were used for the alternating copolymerization of norborn‐2‐ene (NBE) with cis‐cyclooctene (COE) and cyclopentene (CPE), respectively. Alternating copolymers, that is, poly(NBE‐alt‐COE)n and poly(NBE‐alt‐CPE)n containing up to 97 and 91 % alternating diads, respectively, were obtained. The copolymerization parameters of the alternating copolymerization of NBE with CPE under the action of initiators 1 – 3 and 5 – 8 were determined by using both a zero‐ and first‐order Markov model. Finally, kinetic investigations using initiators 1 – 3 , 6 , and 7 were carried out. These revealed that in contrast to the 2nd‐generation Grubbs‐type initiators 1 – 3 the corresponding pyridine derivatives 6 and 7 represent fast and quantitative initiating systems. Hydrogenation of poly(NBE‐alt‐COE)n yielded a fully saturated, hydrocarbon‐based polymer. Its backbone can formally be derived by 1‐olefin polymerization of CPE (1,3‐insertion) followed by five ethylene units and thus serves as an excellent model compound for 1‐olefin polymerization‐derived copolymers.  相似文献   

5.
Fully conjugated block copolymers containing 1,4‐ and 1,3‐phenylenevinylene repeating units can be prepared by the sequential ring opening metathesis polymerization of strained cyclophanedienes, initiated by ruthenium carbene complexes (Grubbs metathesis catalysts). The molecular weight of the constituent blocks can be tightly controlled by changing the catalyst to monomer ratio and the volume fraction of the block copolymers independently tailored by the ratio of the monomers employed. Extensive phase separation between the constituent blocks is observed in thin films of these polymers by atomic force microscopy and efficient energy transfer between blocks containing 1,4‐ and 1,3‐phenylenevinylene units can be seen in the photoluminescence of these materials.

  相似文献   


6.
7.
Poly(3‐hydroxybutyrate) (PHB) is produced by numerous bacteria as carbon and energy reserve storage material. Whereas nature only produces PHB in its strictly isotactic (R) form, homogeneous catalysis, when starting from racemic (rac) β‐butyrolactone (BL) as monomer, can in fact produce a wide variety of tacticities. The variation of the metal center and the surrounding ligand structure enable activity as well as tacticity tuning. However, no homogeneous catalyst exists to date that is easy to modify, highly active, and able to produce PHB with high isotacticities from rac‐β‐BL. Therefore, in this work, the reaction kinetics of various 2‐methoxyethylamino‐bis(phenolate) lanthanide (Ln=Sm, Tb, Y, Lu) catalysts are examined in detail. The order in monomer and catalyst are determined to elucidate the reaction mechanism and the results are correlated with DFT calculations of the catalytic cycle. Furthermore, the enthalpies and entropies of the rate‐determining steps are determined through temperature‐dependent in situ IR measurements. Experimental and computational results converge in one specific mechanism for the ring‐opening polymerization of BL and even allow us to rationalize the preference for syndiotactic PHB.  相似文献   

8.
9.
The ring‐opening polymerization of two caprolactone monomers catalyzed by zinc undecylenate (ZU) is reported. Polymerizations were performed in bulk with benzyl alcohol (BnOH) as an initiator at 90 and 110 °C, respectively. A slower polymerization rate was observed for γ‐octyloxy‐ϵ‐caprolactone as compared to ϵ‐caprolactone. Diblock copolymers were synthesized by the sequential monomer addition at 90 and 110 °C. The kinetic studies performed for the ring‐opening polymerization of ϵ‐caprolactone and γ‐octyloxy‐ϵ‐caprolactone and the successful synthesis of diblock copolymers by the sequential monomer addition confirmed the controlled/living nature of zinc undecylenate catalyzed reactions.  相似文献   

10.
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.

TEM image of Fe3O4/PCL core‐shell particles cast from CHCl3 dispersion.  相似文献   


11.
Ring‐opening metathesis polymerization of 4‐phenylcyclopentene is investigated for the first time under various conditions. Thermodynamic analysis reveals a polymerization enthalpy and entropy sufficient for high molar mass and conversions at lower temperatures. In one example, neat polymerization using Hoveyda–Grubbs second generation catalyst at −15 °C yields 81% conversion to poly(4‐phenylcyclopentene) (P4PCP) with a number average molar mass of 151 kg mol−1 and dispersity of 1.77. Quantitative homogeneous hydrogenation of P4PCP results in a precision ethylene‐styrene copolymer (H2‐P4PCP) with a phenyl branch at every fifth carbon along the backbone. This equates to a perfectly alternating trimethylene‐styrene sequence with 71.2% w/w styrene content that is inaccessible through molecular catalyst copolymerization strategies. Differential scanning calorimetry confirms P4PCP and H2‐P4PCP are amorphous materials with similar glass transition temperatures (Tg) of 17 ± 2 °C. Both materials present well‐defined styrenic analogs for application in specialty materials or composites where lower softening temperatures may be desired.

  相似文献   


12.
Monolithic materials were prepared via electron‐beam curing from ethyl methacrylate, trimethylolpropane triacrylate, and norborn‐5‐ene‐2‐ylmethyl acrylate. Reaction of the norborn‐2‐ene groups with either RuCl2(PCy3)2(CHPh) ( 1 ) or RuCl2(PCy3)(1,3‐dimesityl‐4,5‐dihydroimidazol‐2‐inylidene)(CHPh) ( 2 ) resulted in the surface attachment of the initiators. The extent of initiator immobilization was found to be substantially higher for 1 than for 2 . Reaction of the surface immobilized initiators with various monomers resulted in the desired surface modification of EB‐derived monoliths. The amounts of grafted monomer were determined by elemental analysis and ICP‐OES.

  相似文献   


13.
γ‐Acryloyloxyethyl‐γ‐butyrolactone is formed as a byproduct when the polymerization of γ‐acryloyloxy‐ε‐caprolactone is initiated with aluminium isopropoxide in toluene. The extent of this side reaction decreases with decreasing temperature and is dependent on whether the reaction is stopped as soon as monomer conversion is complete or not. A two‐step backbiting mechanism is proposed for this intramolecular transesterification reaction.  相似文献   

14.
Alternating copolymers constitute an attractive class of materials. It was shown previously that highly alternated poly(β‐hydroxyalkanoate)s (PHAs) can be prepared by ring‐opening polymerization (ROP) of mixtures of two different enantiomerically pure 4‐alkyl‐β‐propiolactones. However, the approach could not be extended to PHAs with chemically tunable functional groups, which is highly desirable to access original advanced materials. Reported herein is the first highly syndioselective and controlled ROP of racemic allyl and benzyl β‐malolactonates (MLAR; R=allyl, benzyl) using an yttrium complex supported by a tetradentate dichloro‐substituted bis(phenolate) ligand. This highly active catalyst allows the nearly perfect alternating copolymerization of MLAAllyl and MLABenzyl. Hydrogenolysis of the benzyloxycarbonyl or functionalization of the allyl pendant groups opens a route towards a new class of functional alternating copolymers.  相似文献   

15.
Summary: Microwave‐assisted ring‐opening polymerization of ε‐caprolactone in the presence of 1‐butyl‐3‐methylimidazolium tetrafluoroborate ionic liquid using zinc oxide as a catalyst is investigated. By adding 30 wt.‐% ionic liquid, poly(ε‐caprolactone) with a weight‐average molar mass of 28 500 g · mol−1 is obtained at 85 W for 30 min. The results indicate that the polymerization could be efficiently enhanced in the presence of ionic liquids under microwave irradiation because ionic liquids can effectively absorb microwave energy.

  相似文献   


16.
A series of pentavalent tantalum and niobium complexes with aryloxy ligands was prepared, and their catalytic behavior for the ROMP of norbornene was studied in the presence of an alkylaluminum cocatalyst. Tantalum complexes 1 – 4 showed very high activity for the ROMP of NBE in combination with iBu3Al to give high‐molecular‐weight polymers. In contrast, the niobium complexes 5 and 6 , as well as NbCl5, exhibited very high activity upon activation with Me3Al to give high‐molecular‐weight polymers.

  相似文献   


17.
Summary: An electrografting technique has been combined with ring‐opening metathesis polymerization (ROMP). Poly(allyl methacrylate) chains have been chemisorbed onto steel and carbon plates under an appropriate cathodic potential in N,N‐dimethylformamide. The allyl moieties have been converted into Ru catalysts active in ROMP of norbornene and its derivatives. Initiation of ROMP from the surface is an efficient strategy to prepare strongly adhering coatings of tunable thickness and hydrophilic/hydrophobic balance, depending on the norbornene derivative polymerized at the surface.

The hydrophobicity of the polymer coating may be controlled by hydrolysis of the polynorbornene derivative.  相似文献   


18.
The successful activation observed when using ButP4 phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di‐n‐propyl cyclopropane‐1,1‐dicarboxylate is described. Well‐defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end‐capping of the propagating malonate carbanion was accessible by using either an electrophilic reagent such as allyl bromide or a strong acid such as HCl. Kinetics studies demonstrated a much higher reactivity compared to the conventional route using alkali metal thiophenolates.

  相似文献   


19.
Monolithic polymeric materials are prepared via ring‐opening metathesis copolymerization of norborn‐2‐ene with 1,4,4a,5,8,8a‐hexahydro‐1,4,5,8‐exo,endo‐dimethanonaphthalene in the presence of macro‐ and microporogens, that is, of n‐hexane and 1,2‐dichloroethane, using the Schrock catalyst Mo(N‐2,6‐(2‐Pr)2‐C6H3)(CHCMe2Ph)(OCMe3)2. Functionalization of the monolithic materials is accomplished by either terminating the living metal alkylidenes with various functional aldehydes or by post‐synthesis grafting with norborn‐5‐en‐2‐ylmethyl‐4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)benzoate. Finally, boronate‐grafted monolithic columns (100 × 3 mm i.d.) are successfully applied to the affinity chromatographic separation of cis‐diol‐based biomolecules.  相似文献   

20.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号