首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Three new molecular building blocks 1 a – c for supramolecular polymerization are described that feature two dipolar merocyanine dyes tethered by p‐xylylene spacers. Concentration‐ and temperature‐dependent UV/Vis spectroscopy in chloroform combined with dynamic light scattering, capillary viscosimetry and atomic force microscopy investigations were applied to elucidate the mechanistic features of the self‐assembly of these strongly dipolar dyes. Our detailed studies reveal that the self‐assembly is very pronounced for bis(merocyanines) 1 a , b bearing linear alkyl chains, but completely absent for bis(merocyanine) 1 c bearing sterically more bulky ethylhexyl substituents. Both temperature‐ and concentration‐dependent UV/Vis data provide unambiguous evidence for a cooperative self‐assembly process for bis(merocyanines) 1 a , b , which was analyzed in detail by the Meijer–Schenning–Van‐der‐Schoot model (applicable to temperature‐dependent data) and by the Goldstein–Stryer model (applicable to concentration‐dependent data). By combining both methods all parameters of interest to understand the self‐assembly process could be derived, including in particular the nucleus size (8–10 monomeric units), the cooperativity factor (ca. 0.006), and the nucleation and elongation constants of about 103 and 106 M ?1 in chloroform at room temperature, respectively.  相似文献   

4.
Azobenzene derivatives have become one of the most famous photoresponsive chromophores in the past few decades for their reversible molecular switches upon the irradiation of actinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine, and light-driven devices, it is usually necessary to adjust their photochemical property from the molecular level by changing the substituents on the benzene rings of azobenzene groups. Among the diverse azobenzene derivatives, azopyridine combines the photoresponsive feature of azobenzene groups and the supramolecular function of pyridyl moieties in one molecule. This unique feature provides pH-responsiveness and hydrogen/halogen/coordination binding sites in the same chromophore, paving a new way to prepare multi-functional responsive materials through non-covalent interactions and reversible chemical reactions. This review summarizes the photochemical and photophysical properties of azopyridine derivatives in supramolecular states (e.g., hydrogen/halogen bonding, coordination interactions, and quaternization reactions) and illustrates their applications from photoresponsive liquid crystals to light-driven devices. We hope this review can highlight azopyridine as one more versatile candidate molecule for designing novel photoresponsive materials towards light-driven applications.  相似文献   

5.
A [2]rotaxane was produced through the assembly of a picolinaldehyde, an amine, and a bipyridine macrocycle around a CuI template by imine bond formation in close‐to‐quantitative yield. An analogous [3]rotaxane is obtained in excellent yield by replacing the amine with a diamine, thus showing the suitability of the system for the construction of higher order interlocked structures. The rotaxanes are formed within a few minutes simply through mixing the components in solution at room temperature and they can be isolated through removal of the solvent or precipitation.  相似文献   

6.
Supramolecular assembly through complementary interaction between molecular subgroups belonging to phase‐separating polymer species offers a great opportunity, not only for constructing nanoscale soft templates reminiscent of conventional block copolymer morphologies, but also for tailoring surface properties by facile removal of one of the structure components by cleaving complementary interactions. Herein we report the fabrication of a novel, organic, nanoporous film through supramolecular assembly of two complementarily, end‐interacting, mono‐end‐functionalized polymers under solvent annealing. The film of end‐functionalized polymer blends under solvent annealing yielded phase‐separated nanodomains that resemble nanoscopically ordered structures of block copolymers, but that are more advantageous due to easily cleavable and exchangeable links between the phase‐separated domains. The removal of one of the components of the precursor structure formed from the end‐functionalized polymers through cleavage of complementary interactions allowed us to fabricate mono‐ or multilayered nanoporous structures in which the chemically useful end‐functionalities of the remnant polymers are rich on the surface of the pores. The resultant, organic, nanoporous films with tailored surface functionality offer a useful platform for various chemical and biological applications.  相似文献   

7.
Two organogelators, CO-01 and CO-03 , featuring benzimidazole and long-chain pyridine carboxyamide groups were prepared and their physical properties were fully explored. CO-01 and CO-03 are capable of transforming various organic solvents to organogels. The morphologic investigations of these organogels have shown that the supramolecular assemblies, in the forms of fibers and spheres, are readily generated from the aggregates of CO-01 and CO-03 . The sol–gel interconversion can be readily achieved by tuning the gelator concentration and temperature. By manipulating the redox state of anthraquinone group in CO-03 , the gel–sol transition for the organogels of CO-03 can be reversibly tuned by either chemical or electrochemical oxidation/reduction reactions. The presence of polarized imidazole and amide N–H groups allows anion-induced gel collapse. The accompanying colorimetric and ratiometric fluorescent responses of gels CO-01 and CO-03 to F and CN render these organogelators being sensitive and selective anion probes.  相似文献   

8.
Two bola form Schiff bases derivatives with different substituted head groups have been designed and their interfacial phase behaviors and coordination with Cu(II) ions were investigated. It has been found that while one molecule with benzene headgroup formed dotted aggregations at the air/water interface, another with naphthyl moiety as head group formed crystalline multilayer films on water surface. When on the sub phase containing Cu(II) ions, both of the Schiff bases can coordinate with Cu(II) in situ in the spreading films with the obvious conformational change of alkyl chains. The in situ Cu(II)-coordinated films could be transferred onto solid substrates and subsequently characterized by various spectroscopic methods such as UV-vis and Fourier transform infrared spectra as well as the morphological character with atomic force microscopy measurement. In comparison, the ex situ coordination process at the liquid/solid interface have also been investigated by continuous spectral measurement. Depending on the different head groups, these amphiphiles showed different aggregation behaviors in the Langmuir-Blodgett films. Particularly, during the coordination process of ligand with Cu(II) ions in organized molecular films, great conformational change of the alkyl chains was observed. At the same time, a rational explanation about the head group effect on regulating the aggregation behaviors was discussed.  相似文献   

9.
The highly stereoselective supramolecular self‐assembly of α‐amino acids with a chiral aldehyde derived from binol and a chiral guanidine derived from diphenylethylenediamine (dpen) to form the imino acid salt is reported. This system can be used to cleanly convert D ‐amino acids into L ‐amino acids or vice versa at ambient temperature. It can also be used to synthesize α‐deuterated D ‐ or L ‐amino acids. A crystal structure of the ternary complex together with DFT computation provided detailed insight into the origin of the stereoselective recognition of amino acids.  相似文献   

10.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   

11.
A strategy for scaffold‐free self‐assembly of multiple oligomeric enzymes was developed by exploiting enzyme oligomerization and protein–protein interaction properties, and was tested both in vitro and in vivo. Octameric leucine dehydrogenase and dimeric formate dehydrogenase were fused to a PDZ (PSD95/Dlg1/zo‐1) domain and its ligand, respectively. The fusion proteins self‐assembled into extended supramolecular interaction networks. Scanning‐electron and atomic‐force microscopy showed that the assemblies assumed two‐dimensional layer‐like structures. A fluorescence complementation assay indicated that the assemblies were localized to the poles of cells. Moreover, both in vitro and in vivo assemblies showed higher NAD(H) recycling efficiency and structural stability than did unassembled structures when applied to a coenzyme recycling system. This work provides a novel method for developing artificial multienzyme supramolecular devices and for compartmentalizing metabolic enzyme cascades in living cells.  相似文献   

12.
陈湧  刘育 《有机化学》2012,32(5):805-814
环糊精是一类由6~8个D-型葡萄糖连接而成的环聚多糖分子,目前已广泛应用于化学和生物学的许多领域.综述了一些生物活性的环糊精超分子组装体,如环糊精假聚轮烷、环糊精/金纳米粒子组装体、环糊精/富勒烯组装体、环糊精/碳纳米管组装体等的构筑及其与核酸的相互作用,如对核酸的切割、凝聚、传递作用和对核酸酶的抑制作用等方面的研究进展.  相似文献   

13.
14.
Two derivatives, 3 L and 9 L , of a ditopic, multiply hydrogen‐bonding molecule, known for more than a decade, have been found, in the solid state as well as in solvents of low polarity at room temperature, to exist not as monomers, but to undergo a remarkable self‐assembly into a complex supramolecular species. The solid‐state molecular structure of 3 L , determined by single‐crystal X‐ray crystallography, revealed that it forms a highly organized hexameric entity 3 L 6 with a capsular shape, resulting from the interlocking of two sets of three monomolecular components, linked through hydrogen‐bonding interactions. The complicated 1H NMR spectra observed in o‐dichlorobenzene (o‐DCB) for 3 L and 9 L are consistent with the presence of a hexamer of D3 symmetry in both cases. DOSY measurements confirm the hexameric constitution in solution. In contrast, in a hydrogen‐bond‐disrupting solvent, such as DMSO, the 1H NMR spectra are very simple and consistent with the presence of isolated monomers only. Extensive temperature‐dependent 1H NMR studies in o‐DCB showed that the L 6 species dissociated progressively into the monomeric unit on increasing th temperature, up to complete dissociation at about 90 °C. The coexistence of the hexamer and the monomer indicated that exchange was slow on the NMR timescale. Remarkably, no species other than hexamer and monomer were detected in the equilibrating mixtures. The relative amounts of each entity showed a reversible sigmoidal variation with temperature, indicating that the assembly proceeded with positive cooperativity. A full thermodynamic analysis has been applied to the data.  相似文献   

15.
The study of protein self‐assembly has attracted great interest over the decades, due to the important role that proteins play in life. In contrast to the major achievements that have been made in the fields of DNA origami, RNA, and synthetic peptides, methods for the design of self‐assembling proteins have progressed more slowly. This Concept article provides a brief overview of studies on native protein and artificial scaffold assemblies and highlights advances in designing self‐assembling proteins. The discussions are focused on design strategies for self‐assembling proteins, including protein fusion, chemical conjugation, supramolecular, and computational‐aided de novo design.  相似文献   

16.
17.
In our previous paper, we reported that a dimeric Zn2+ complex with a 2,2′‐bipyridyl linker (Zn2L1), cyanuric acid (CA), and a Cu2+ ion automatically assemble in aqueous solution to form 4:4:4 complex 3 , which selectively catalyzes the hydrolysis of mono(4‐nitrophenyl)phosphate (MNP) at neutral pH. Herein, we report that the use of barbital (Bar) instead of CA for the self‐assembly with Zn2L1 and Cu2+ induces 2:2:2 complexation of these components, and not the 4:4:4 complex, to form supramolecular complex 6 a , the structure and equilibrium characteristics of which were studied by analytical and physical measurements. The finding show that 6 a also accelerates the hydrolysis of MNP, similarly to 3 . Moreover, inspired by the crystal structure of 6 a , we prepared barbital units that contain functional groups on their side chains in an attempt to produce supramolecular phosphatases that possess functional groups near the Cu2(μ‐OH)2 catalytic core so as to mimic the catalytic center of alkaline phosphatase (AP).  相似文献   

18.
Some single chain Schiff bases amphiphiles with different substituted headgroups have been designed and their interfacial phase behaviors and coordination with Cu(II) ions were investigated. It has been found that depending on the size of aromatic headgroups, the formed nanostrucures showed obvious differences, indicating different aggregation behaviors in the Langmuir-Blodgett films. The spreading Cu(II)-coordinated films could be transferred and subsequently characterized by spectral methods and morphological measurement. In addition, during the coordination process of ligand with Cu(II) ions in organized molecular films, some conformational change of long alkyl chains was observed. The present work showed clearly the headgroup effect of amphiphiles on regulating the aggregation behaviors in Langmuir-Blodgett films.  相似文献   

19.
p-Benzylcalix[5]arene.3py (py = pyridine) (1) crystallizes in the triclinic space group P1, a = 10.641(3), b = 13.975(3), c = 24.052(12) Å, = 94.60(4), = 91.51(4), = 111.46(2)°, V = 3312(4) Å3, Z = 2. Refinement led to a final conventional R value of 0.065 for 5457 reflections. The calixarene is in a distorted cone conformation. Two pyridine molecules are hydrogen bonded to phenolic oxygen atoms and one of them is included in the hydrophobic cavity of the neighboring calixarene molecule along the a axis.  相似文献   

20.
Bis(imidazolylporphyrinatozinc) molecules linked through a 1,3-butadiynylene moiety respond to the solvents they are dissolved in to afford exclusively extended (E) or stacked (S) supramolecular polymers. This system is expected to be a solvation/desolvation indicator. However, the principles underlying the solvent-dependent formation of the two types of polymers and the mechanism of the transformation between them are unclear. The formation of the polymers is considered to depend on the two types of complementary coordination bonds that can be formed and the π–π interactions between the porphyrins. In this study, the contributions and solvent dependence of both the coordination bonds and the π–π interactions have been investigated. The results clearly indicate that the coordination bonds are weakly or little solvent-dependent, and that the π–π interactions function effectively only in the inner porphyrins of the S-polymer and are strongly solvent-dependent. Thermodynamic analysis revealed that the formation of the E- or S-polymer in solution is determined by the total energies and the type of solvent used. The transformation of the E- to S-polymer was investigated by gel permeation chromatography. The kinetics of the transformation were also determined. The role of the terminal imidazolylporphyrinatozinc moieties was also investigated: The results indicate that the transformation from the E- to S-polymer occurs by an exchange mechanism between the polymers, induced by attack of terminal free imidazolyl groups on a polymer to zinc porphyrins on other polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号