首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln(3+)), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO(2)-Ln(3+) nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln(3+), we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging.  相似文献   

2.
Abstract

Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel luminescent probes for both diagnostic (e.g., imaging) and therapeutic (e.g., drug delivery) purposes because of their size comparable to biomolecules and their novel optical, electronic, and magnetic properties. Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as reticuloendothelial system. Three distinct types of luminescent nanoparticles have been identified which show promise in bioanalysis, namely dye‐doped nanoparticles, semiconductor and metal nanoparticles. In this article we examine the recent advances in the development of dye‐doped nanoparticles, metal and semiconductor nanoparticles, bioconjugation schemes to attach these nanoparticles to biomolecules and a few biological applications.  相似文献   

3.
Since quantum information technologies are expected to offer communication security and high computational capacities, research in the field is currently attracting a lot of attention. Among the materials studied so far, rare earth doped inorganic insulators are one of the most promising. With the different available trivalent rare earth ions, the visible and the IR range including the telecom wavelength at 1.5 μm can be covered. Transitions are usually narrow, and at low temperatures, long optical and spin coherence times can often be observed. Investigations using bulk single crystals have already led to many promising results. Recently, spectroscopic studies have been extended to other forms of inorganic materials, such as transparent ceramics, thin films, and nanoparticles for single rare‐earth qubits. Progress in these areas is expected to offer many new possibilities for the design of quantum light‐matter interfaces and scalable quantum memories and processors.  相似文献   

4.
Hybrid nanoparticles are of significant interest primarily because of their innate multifunctional capabilities. These capabilities can be exploited when hybrid nanoparticles are used for applications in the biomedical sciences in particular, where they are utilized as multimodal nanoplatforms for sensing, imaging, and therapy of biological targets. However, the realization of their biomedical applications has been difficult, in part because of a lack of high quality hybrid nanoparticles which possess high aqueous colloidal stability and biocompatibility while retaining their multifunctionalities. Here, we present the development of inorganic heterodimer nanoparticles of FePt-Au with multifunctional capabilities including catalytic growth effects, magnetic resonance (MR) contrast effects, optical signal enhancing properties, and high colloidal stability and biocompatibility. Their multimodal capabilities for biological detection are demonstrated through their utilizations in the patterned biochip based detection of avidin-biotin interaction as well as in molecular MR imaging of neuroblastoma cells.  相似文献   

5.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have shown great promise in bioapplications. Exploring new host materials to realize efficient upconversion luminescence (UCL) output is a goal of general concern. Herein, we develop a unique strategy for the synthesis of novel LiLuF4:Ln3+ core/shell UCNPs with typically high absolute upconversion quantum yields of 5.0 % and 7.6 % for Er3+ and Tm3+, respectively. Based on our customized UCL biodetection system, we demonstrate for the first time the application of LiLuF4:Ln3+ core/shell UCNPs as sensitive UCL bioprobes for the detection of an important disease marker β subunit of human chorionic gonadotropin (β‐hCG) with a detection limit of 3.8 ng mL−1, which is comparable to the β‐hCG level in the serum of normal humans. Furthermore, we use these UCNPs in proof‐of‐concept computed tomography imaging and UCL imaging of cancer cells, thus revealing the great potential of LiLuF4:Ln3+ UCNPs as efficient nano‐bioprobes in disease diagnosis.  相似文献   

6.
Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle–protein hybrids with tailored functionality, water solubility, and tunable frameworks with well‐defined structure. In this work, we report a protein‐templated synthesis of Mn‐doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn‐doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual‐channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn‐doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn‐doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM , respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual‐channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA–lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn‐doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins.  相似文献   

7.
We report the structural, thermal, optical, and redox properties of Fe‐doped cerium oxide (CeO2) nanoparticles, obtained using the polyol‐co‐precipitation process. X‐ray diffraction data reveal the formation of single‐phase structurally isomorphous CeO2. The presence of Fe3+ may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe‐doped CeO2 nanoparticles as confirmed by optical band gap energy. The increased content of localized defect states in the ceria gap and corresponding shift of the optical absorption edge towards visible range in Fe‐doped samples can significantly improve the optical activity of nanocrystalline ceria. The better‐quality redox performances of the Fe‐doped CeO2 nanoparticles, compared with undoped CeO2 nanoparticles, were ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. As observed from TPR studies all Fe ‐doped CeO2 nanoparticles, particularly the 10 mol % Fe doped CeO2 nanoproduct, exhibit excellent reduction performance.  相似文献   

8.
Liu L  Law WC  Yong KT  Roy I  Ding H  Erogbogbo F  Zhang X  Prasad PN 《The Analyst》2011,136(9):1881-1886
Recently, multimodal nanoparticles integrating dual- or tri-imaging modalities into a single hybrid nanosystem have attracted plenty of attention in biomedical research. Here, we report the fabrication of two types of multimodal micelle-encapsulated nanoparticles, which were systematically characterized and thoroughly evaluated in terms of their imaging potential and biocompatibility. Optical and magnetic resonance (MR) imaging probes were integrated by conjugating DOTA-gadolinium (Gd) derivative to quantum dot based nanomicelles. Two amphiphilic block copolymer micelles, amine-terminated mPEG-phospholipid and amine-modified Pluronic F127, were chosen as the capping agents because of their excellent biocompatibility and ability to prevent opsonization and prolong circulation time in vivo. Owing to their different hydrophobic-hydrophilic structure, the micellar aggregates exhibited different sizes and protection of core QDs. This work revealed the differences between these nanomicelles in terms of the stability over a wide range of pH, along with their cytotoxicity and the capacity for chelating gadolinium, thus providing a useful guideline for tailor-making multimodal nanoparticles for specific biomedical applications.  相似文献   

9.
The combination of materials that possess different properties (such as, for instance, fluorescence and magnetism) into one single object of nanoscale size represents an attractive challenge for biotechnology, especially for their potential relevance in biomedical applications. We report here the preparation of novel bifunctional conjugates based on the linkage of inorganic nanoparticles to organic oligothiophene fluorophores (OTFs). In comparison to the organic dyes commonly used in bioimaging and more similarly to colloidal quantum dots, OTFs have broad optical absorption spectra, and therefore OTF fluorophores emitting at different colors can be excited with a single excitation source, allowing for easier multiplexing analysis. In this work we show the preparation of OTF-nanoparticle conjugates based on gold and iron oxide nanoparticles and their characterization using different techniques such as gel electrophoresis, photoluminescence spectroscopy, dynamic light scattering, and so on. In addition, by performing an in vitro study on human tumor cells we show that OTF-nanoparticle conjugates emitting at different colors can be used for multiplexing detection. Also, in the case of iron oxide-OTF conjugates, once uptaken by the cells, we show that they preserve both their fluorescent and their magnetic properties.  相似文献   

10.
目前,稀土无机发光材料在激光、光通讯、平板显示、荧光生物标记和纳米光电子器件等领域具有广泛的应用前景.稀土离子(从Ce到Yb)是一类性能优异的结构和光谱探针,其在不同介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学.对稀土发光材料开展深入的光学和光电子学基础研究有助于发现新颖的光学性能或开辟新的应用领域.依托研制的低温高分辨激光光谱和上转换量子产率等仪器,本课题组致力于稀土无机发光材料电子结构与性能研究,近年来在发光材料的控制合成、电子结构、光学性能及生物应用等方面取得了系列重要结果.这些研究有望加快实现稀土无机发光材料在生物应用的突破,实现稀土资源的高值利用.  相似文献   

11.
Metal‐doped polyoxotitanium cages are a developing class of inorganic compounds which can be regarded as nano‐ and sub‐nano sized molecular relatives of metal‐doped titania nanoparticles. These species can serve as models for the ways in which dopant metal ions can be incorporated into metal‐doped titania (TiO2), a technologically important class of photocatalytic materials with broad applications in devices and pollution control. In this study a series of cobalt(II)‐containing cages in the size range ca. 0.7–1.3 nm have been synthesized and structurally characterized, allowing a coherent study of the factors affecting the band gaps in well‐defined metal‐doped model systems. Band structure calculations are consistent with experimental UV/Vis measurements of the TixOy absorption edges in these species and reveal that molecular dipole moment can have a profound effect on the band gap. The observation of a dipole‐induced band‐gap decrease mechanism provides a potentially general design strategy for the formation of low band‐gap inorganic cages.  相似文献   

12.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well‐selected bifunctional gadolinium (Gd)‐ion‐doped UCNPs and water‐soluble methylene blue (MB) combined with the water‐in‐oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB‐based PDT drug, NaYF4:Er/Yb/Gd@SiO2(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug‐formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as‐designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near‐infrared laser‐triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

13.
The assembly of protein and inorganic nanoparticles represents an attractive approach to generate composite materials with multiple functions. Herein, we functionalize inorganic nanoparticles with intrinsically disordered protein domains associated with the formation of membraneless compartments in cells. These protein sequences, defined as low complexity domains (LCDs), encode intermolecular interactions that drive highly controlled, dynamic self‐assembly in response to environmental changes. We show that the properties of the LCDs can be transferred to inorganic nanoparticles, inducing controlled phase separation that is dynamic and responsive to ionic strength and pH. Specifically, we hybridize magnetic nanoparticles with multi‐domain proteins consisting of LCD domains and a globular enzyme, generating dynamic protein‐composite compartments that locally confine hybrid chemoenzymatic reactions and respond to external magnetic fields and changes in solution conditions.  相似文献   

14.
In this paper, we report systematic investigations on the effects of Ni doping on the structural, optical, magnetic and photocatalytic characteristics of CuS nanoparticles synthesized by simplistic wet chemical co-precipitation route via EDTA molecules as templates. XRD studies confirmed that accurate phase formation of synthesized nanoparticles and chemical composition were obtained by EDX. Magnetic measurements revealed that 3% Ni doped CuS nanoparticles show signs of good ferromagnetism at room temperature and transition of magnetic signs from ferromagnetic to paramagnetic nature by increasing the Ni dopant concentration in CuS host matrix. The photocatalytic degradation efficiency of the prepared pure and Ni doped CuS nanoparticles were evaluated as a function of simulated sunlight irradiation via RhB organic dye pollutant as a test molecule. Particularly, in the presence of 3% Ni doped CuS nanoparticles in pollutant solution 98.46% degradation efficiency was achieved within 60 min of sunlight irradiation; meanwhile bare CuS attained only 83.22%. Further, after five cycles 3% Ni doping CuS nanoparticles exhibit good photocatalytic stability with very negligible catalyst loss. We believe that the investigations in this study provides adaptable pathway for the synthesizing of various diluted magnetic semiconductor nanoparticles and their applications in spintronic devices as well as sunlight-driven photocatalysts intended for wastewater purification.  相似文献   

15.
Optical imaging plays a growing role in modern biomedical research and clinical applications due to its high sensitivity, superb spatiotemporal resolution and minimal hazards. Lanthanide‐doped nanoparticles (LDNPs), as a classical category of luminescent materials, exhibit promising photostability, near‐infrared (NIR)‐excited frequency up‐/down‐converting capabilities, emission fine‐tuning and multispectral features, which have greatly promoted the endeavors of deeper and clearer diagnostics in complex living conditions. This review focuses on the recent advances of LDNP‐based multipurpose imaging studies using upconversion, downshifting, lifetime, photoacoustic and multimodal nanoprobes in the NIR (650–1000 nm) and the second near‐infrared window (NIR‐II, 1000–1700 nm). The principle and design of various functional, activatable, multiplexing or multimodal lanthanide‐imaging nanoprobes (LINPs) as well as representative biophotonic applications are summarized in detail. In addition, the future perspectives and challenges for facilitating LINPs to clinical translations are discussed.  相似文献   

16.
Nanoparticle-based contrast agents are attracting a great deal of attention for various biomedical imaging and theranostic applications. Compared to conventional contrast agents, nanoparticles possess several potential advantages to improve in vivo detection and to enhance targeting efficiency. Silica-based nanoprobes can be engineered to achieve longer blood circulation times, specific clearance pathways, and multivalent binding. In this tutorial review, we summarize the latest progress on designing silica-based nanoprobes for imaging and theranostic applications. The synthesis of both solid silica and mesoporous silica nanoparticles is described, along with different approaches used for surface functionalization. Special emphasis is placed on the application of silica-based nanoprobes in optical, magnetic resonance, and multimodal imaging. The latest breakthroughs in the applications of silica nanoparticles as theranostic agents are also highlighted.  相似文献   

17.
Contrast agents for magnetic resonance imaging have historically been based on paramagnetic metal complexes, particularly Gd3+ chelates, which tend to lose their contrast enhancement ability with increasing magnetic field strength. Emerging high-field MRI applications require the development of novel contrast agents that exhibit high relaxation enhancement as a function of magnetic field strength. Paramagnetic ions such as Dy3+, Tb3+ or Ho3+ incorporated into supramolecular or inorganic nano-architectures represent promising platforms for the development of high field MRI contrast agents. Furthermore, such platforms allow facile inclusion of multiple imaging modalities, therapeutic loading, and targeting vectors. This Minireview examines the application of contrast agents for high-field MRI, which range from single molecules to nanoparticles. Approaches to create multimodal agents by combining high-field MRI contrast properties with another imaging modality are also discussed.  相似文献   

18.
The enthusiasm for research on lanthanide‐doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.  相似文献   

19.
The optical properties of rare earth ions in different inorganic host materials, for instance oxides, silicates, borates, or nitrides, have been used in applications for many years, from color TV to fluorescent tubes, lasers, or pc‐LEDs. However, rare earth metal ion‐doped hydrides have not really been considered as host lattices and up to now only been studied in a relatively small number of investigations. Yet, for certain metal hydrides these studies, e.g., allowed the determination of the crystal field strength and nephelauxetic effect of the hydride anion using the Eu2+ 5d excited state. In air‐sensitive hydrides, the use may be restricted to fundamental studies and local probes. But recently more and more air‐stable mixed anionic hydrides have been discovered, which may serve as hosts. This short review summarizes the synthesis and characterization of rare earth metal ion‐doped hydrides reported so far.  相似文献   

20.
杜凯  朱艳红  徐辉碧  杨祥良 《化学进展》2011,23(11):2287-2298
多功能磁性纳米粒由于其独特的性质而受到广泛的关注。磁性纳米粒可以与荧光探针、生物靶向分子或抗肿瘤药物等相结合实现磁性纳米粒的多功能化,因此在多模式成像、癌症的靶向诊断与治疗中有较好的应用前景。本文介绍了磁性纳米粒的合成以及多功能磁性纳米粒的构建方法,重点介绍了核壳型、哑铃型和组合杂化型三种不同类型多功能磁性纳米粒的合成方法。多功能磁性纳米粒通常具有粒径小、超顺磁性以及荧光等独特性质,在此基础上对纳米粒表面进行稳定化和靶向性修饰后即可在多模式成像、特异性靶向药物输送、基因转染等生物医学领域得到应用。最后指出了当前研究中需要解决的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号