首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The long wavelength UV photochemistry was investigated of a model compound for poly(2,6‐dimethyl‐1,4‐phenylene oxide). Irradiation of the phenyl‐capped dimer of 2,6‐dimethyl phenol at wavelengths >290 nm with UVA‐340 fluorescent lamps in the absence of oxygen gave no detectable products after 27 days. Very low conversion to oxidation products was found in the presence of oxygen, but about 20% conversion to products in which solvent had added to the benzylic methyl groups occurred under aerobic conditions when the solvents had readily abstractable hydrogen atoms. A mechanism is proposed involving the facile, reversible abstraction of a benzylic hydrogen by oxygen as a first step in the oxidation. The hydroperoxyl radical that is formed can abstract hydrogen atoms from 2° and 3° carbons of the solvent, and these radicals can combine with the benzylic radicals to give the solvent adducts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2221–2226  相似文献   

2.
Dicarbon (C2), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas‐phase synthesis is presented of the benzyl radical (C6H5CH2) by the crossed molecular beam reaction of dicarbon, C2(X1Σg+, a3Πu), with 2‐methyl‐1,3‐butadiene (isoprene; C5H8; X1A′) accessing the triplet and singlet C7H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon–carbon double bond of the 2‐methyl‐1,3‐butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7H7 radical species through atomic hydrogen elimination. The benzyl radical (C6H5CH2), the thermodynamically most stable C7H7 isomer, is determined as the major product.  相似文献   

3.
Hydrogen‐atom transfer (HAT) counts amongst the most widely investigated routes to carbon‐centered radicals. Intramolecular processes involving 1,5‐HAT are widespread to promote regioselective radical “C?H activation”. The aim of this review is to draw up a comprehensive inventory of the less commonly encountered 1,n‐radical translocations (n≠5) with the aim to update this topic with the most recent relevant data.  相似文献   

4.
5.
We have reported that intramolecular chain‐transfer reaction takes place in radical polymerization of itaconates at high temperatures and/or at low monomer concentrations. In this article, radical polymerizations of di‐n‐butyl itaconate (DBI) were carried out in toluene at 60 °C in the presence of amide compounds. The 13C‐NMR spectra of the obtained poly(DBI)s indicated that the intramolecular chain‐transfer reaction was suppressed as compared with in the absence of amide compounds. The NMR analysis of DBI and N‐ethylacetamide demonstrated both 1:1 complex and 1:2 complex were formed at 60 °C through a hydrogen‐bonding interaction. The ESR analysis of radical polymerization of diisopropyl itaconate (DiPI) was conducted in addition to the NMR analysis of the obtained poly(DiPI). It was suggested that the suppression of the intramolecular chain‐transfer reaction with the hydrogen‐bonding interaction was achieved by controlling the conformation of the side chain at the penultimate monomeric unit of the propagating radical with an isotactic stereosequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4895–4905, 2004  相似文献   

6.
Radical polymerization of Nn‐propyl‐α‐fluoroacrylamide (NNPFAAm) was investigated in several solvents at low temperatures in the presence or absence of Lewis bases, Lewis acids, alkyl alcohols, silyl alcohols, or fluorinated alcohols. Different effects of solvents and additives on stereospecificity were observed in the radical polymerizations of NNPFAAm and its hydrocarbon analogs such as N‐isopropylacrylamide (NIPAAm) and Nn‐propylacrylamide (NNPAAm); for instance, syndiotactic (and heterotactic) specificities were induced in radical polymerization of NNPFAAm in polar solvents (and in toluene in the presence of alkyl and silyl alcohols), whereas isotactic (and syndiotactic) specificities were induced in radical polymerizations of the hydrocarbon analogs under the corresponding conditions. In contrast, heterotactic specificity induced by fluorinated alcohols was further enhanced in radical polymerization of NNPFAAm. The effects of stereoregularity on the phase‐transition behaviors of aqueous solutions of poly(NNPFAAm) were also investigated. Different tendencies in stereoregularity were observed in aqueous solutions of poly(NNPFAAm)s from those in solutions of the hydrocarbon analogs such as poly(NIPAAm) and poly (NNPAAm). The polymerization behavior of NNPFAAm and the phase‐transition behavior of aqueous poly(NNPFAAm) are discussed based on possible fluorine–fluorine repulsion between the monomer and propagating chain‐end, and neighboring monomeric units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Adverse drug reactions are commonly the result of cytochrome P450 enzymes (CYPs) converting the drugs into reactive metabolites. Thus, information about the CYP bioactivation of drugs would not only provide insight into metabolic stability, but also into the potential toxicity. For example, oxidation of phenyl rings may lead to either toxic epoxides or safer phenols. Herein, we demonstrate that the potential to form reactive metabolites is encoded primarily in the properties of the molecule to be oxidized. While the enzyme positions the molecule inside the binding pocket (selects the site of metabolism), the subsequent reaction is only dependent on the substrate itself. To test this hypothesis, we used this observation as a predictor of drug inherent toxicity. This approach was used to successfully identify the formation of reactive metabolites in over 100 drug molecules. These results provide a new perspective on the impact of functional groups on aromatic oxidation of drugs and their effects on toxicity.  相似文献   

8.
Aspects of applying n‐pulse periodic initiation in pulsed laser polymerization/size‐exclusion chromatography (PLP/SEC) experiments are studied via simulation of molecular weight distributions (MWDs). In n‐pulse periodic PLP/SEC, sequences of n laser pulses at successive time intervals Δt1 up to Δtn are periodically applied. With the dark time intervals being suitably chosen, n‐modal MWDs with n well separated peaks occur. The n‐pulse periodic PLP/SEC method has the potential for providing accurate propagation rate coefficients, kp. Among several measures for kp, the differences in molecular weights at the MWD peak positions yield the best estimate of kp under conditions of medium and high pulse laser‐induced free‐radical concentration. Deducing kp from n dark time intervals (corresponding to n regions of free‐radical chain length) within one experiment at otherwise identical PLP/SEC conditions allows addressing in more detail a potential chain‐length dependence of kp. Simulations are compared with experimental data for 2‐pulse periodic polymerization of methyl methacrylate.

Measured MWD (solid line) and associated first derivative curve (dotted line) for a 2‐pulse periodic bulk polymerization experiment of MMA at 20 °C.  相似文献   


9.
A series of urea‐derived heterocycles, 5N‐substituted hexahydro‐1,3,5‐triazin‐2‐ones, has been prepared and their structures have been determined for the first time. This family of compounds only differ in their substituent at the 5‐position (which is derived from the corresponding primary amine), that is, methyl ( 1 ), ethyl ( 2 ), isopropyl ( 3 ), tert‐butyl ( 4 ), benzyl ( 5 ), N,N‐(diethyl)ethylamine ( 6 ), and 2‐hydroxyethyl ( 7 ). The common heterocyclic core of these molecules is a cyclic urea, which has the potential to form a hydrogen‐bonding tape motif that consists of self‐associative (8) dimers. The results from X‐ray crystallography and, where possible, Laue neutron crystallography show that the hydrogen‐bonding motifs that are observed and the planarity of the hydrogen bonds appear to depend on the steric hindrance at the α‐carbon atom of the N substituent. With the less‐hindered substituents, methyl and ethyl, the anticipated tape motif is observed. When additional methyl groups are added onto the α‐carbon atom, as in the isopropyl and tert‐butyl derivatives, a different 2D hydrogen‐bonding motif is observed. Despite the bulkiness of the substituents, the benzyl and N,N‐(diethyl)ethylamine derivatives have methylene units at the α‐carbon atom and, therefore, display the tape motif. The introduction of a competing hydrogen‐bond donor/acceptor in the 2‐hydroxyethyl derivative disrupts the tape motif, with a hydroxy group interrupting the N? H???O?C interactions. The geometry around the hydrogen‐bearing nitrogen atoms, whether planar or non‐planar, has been confirmed for compounds 2 and 5 by using Laue neutron diffraction and rationalized by using computational methods, thus demonstrating that distortion of O‐C‐N‐H torsion angles occurs to maintain almost‐linear hydrogen‐bonding interactions.  相似文献   

10.
采用量子化学密度泛函理论研究了正辛烷与OH自由基的大气氧化反应机理。在B3LYP/6-31G(d)水平上对该反应体系的反应物、中间体、过渡态及产物进行了几何构型优化和频率计算,并在B3LYP/6-311+G(3df,2p)水平上进行了单点能计算,得出了各反应通道的势能剖面图. 计算结果表明: 羟基硝酸酯和含有羟基羰基官能团的化合物是主要的反应产物,并且它们的挥发性较低,容易形成二次有机气溶胶。另外,本文将理论计算结果与可用的实验观测结果进行了比较。  相似文献   

11.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

12.
The reactions of 1‐pentenyl decomposition system have been studied extensively at the B3LYP/6‐311++G?? ?? level with Gaussion 98 package. The potential energy surface with zero‐point energy correction was drawn. All reaction channels were fully investigated with the vibrational mode analysis, frontier orbital analysis and electron population analysis to confirm the transition states and reveal the reaction mechanism.  相似文献   

13.
The gas‐phase decomposition of the α‐hydroxy methylperoxy radical has been theoretically examined, and the results provide insight into a new source of the hydroperoxy radical (HO2) in the troposphere. Bimolecular peroxy decomposition is promoted by the red‐light or near‐IR radiation excitation. The calculations suggest for the first time, an important chemical role for the H2O?HO2 radical complex that exist in significant abundance in the troposphere. In particular, the reaction of organic peroxy radicals with the HO2 radical and the H2O?HO2 radical complex represent an autocatalytic source of atmospheric HO2. This reaction is a new example of red‐light‐initiated atmospheric chemistry that may help in understanding the discrepancy between the observed and measured levels of the HOx at sunrise.  相似文献   

14.
The hydrogen abstraction reactions between chlorine‐substituted acetaldehydes and OH radicals have been investigated by using ab initio molecular orbital theory. Equilibrium geometries and transition‐state structures have been optimized at the (U)MP2/6‐311G(d,p) level. Activation barriers and heats of reaction for different reaction channels have been estimated from the single‐point calculations at the (U)MP2/6‐311G(2df,2p) level. Three, two, and one hydrogen abstraction channel have been found for the mono‐, di‐, and trichloroacetaldehyde, respectively. At a higher temperature region, hydrogen abstraction from the formyl group is found to be the major reaction channel for all the three chloroacetaldehydes. The effect of halogen substitution on reactivity toward hydrogen abstraction has been discussed. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1509–1521, 2001  相似文献   

15.
The purpose of this paper is to provide an in‐depth investigation of the electronic and optical properties of two series of carbazole‐based blue light‐emitting dendrimers, including 1 – 6 six oligomers. These materials show great potential for application in organic light‐emitting diodes as efficient blue‐light and red‐light emitting materials due to the tuning of the optical and electronic properties by the use of different electron donors (D) and electron acceptors (A). The geometric and electronic structures of these compounds in the ground state are calculated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized by ab initio single excitation configuration interaction (CIS). All DFT calculations are performed using the B3LYP functional on 6‐31G* basis set. The outcomes show that the highest occupied molecular orbitals (HOMOs), lowest occupied molecular orbitals (LUMOs), energies gaps, ionization potentials, electron affinities and reorganization energies of each molecular are affected by different D and A moieties and different substitute positions.  相似文献   

16.
Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin–spin J‐coupling interaction (J‐modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J‐modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications.  相似文献   

17.
2‐[(N‐Benzyl‐N‐methylamino)methyl]‐1,3‐butadiene (BMAMBD), the first asymmetric tertiary amino‐containing diene‐based monomer, was synthesized by sulfone chemistry and a nickel‐catalyzed Grignard coupling reaction in high purity and good yield. The bulk and solution free‐radical polymerizations of this monomer were studied. Traditional bulk free‐radical polymerization kinetics were observed, giving polymers with 〈Mn〉 values of 21 × 103 to 48 × 103 g/mol (where Mn is the number‐average molecular weight) and polydispersity indices near 1.5. In solution polymerization, polymers with higher molecular weights were obtained in cyclohexane than in tetrahydrofuran (THF) because of the higher chain transfer to the solvent. The chain‐transfer constants calculated for cyclohexane and THF were 1.97 × 10?3 and 5.77 × 10?3, respectively. To further tailor polymer properties, we also completed copolymerization studies with styrene. Kinetic studies showed that BMAMBD incorporated into the polymer chain at a faster rate than styrene. With the Mayo–Lewis equation, the monomer reactivity ratios of BMAMBD and styrene at 75 °C were determined to be 2.6 ± 0.3 and 0.28 ± 0.02, respectively. Altering the composition of BMAMBD in the copolymer from 17 to 93% caused the glass‐transition temperature of the resulting copolymer to decrease from 64 to ?7 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3227–3238, 2001  相似文献   

18.
The radical polymerizations of N‐alkylacrylamides, such as N‐methyl‐(NMAAm), Nn‐propyl‐(NNPAAm), N‐benzyl‐(NBnAAm), and N‐(1‐phenylethyl)acrylamides (NPhEAAm), at low temperatures were investigated in the absence or presence of hexamethylphosphoramide (HMPA) and 3‐methyl‐3‐pentanol (3Me3PenOH), which induced the syndiotactic specificities in the radical polymerization of N‐isopropylacrylamide (NIPAAm). In the absence of the syndiotactic‐specificity inducers, the syndiotacticities of the obtained polymers gradually increased as the bulkiness of the N‐substituents increased. Both HMPA and 3Me3PenOH induced the syndiotactic specificities in the NNPAAm polymerizations as well as in the NIPAAm polymerizations. The addition of 3Me3PenOH into the polymerizations of NMAAm significantly induced the syndiotactic specificities, whereas the tacticities of the obtained polymers were hardly affected by adding HMPA. In the polymerizations of bulkier monomers, such as NBnAAm and NPhEAAm, HMPA worked as the syndiotactic specificity inducer at higher temperatures, whereas 3Me3PenOH hardly influenced the stereospecificity, regardless of the temperatures. The phase‐transition behaviors of the aqueous solutions of poly(NNPAAm)s were also investigated. It appeared that the poly (NNPAAm) with racemo dyad content of 70% exhibited unusual large hysteresis between the heating and cooling processes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4575–4583, 2008  相似文献   

19.
Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non‐enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2S/HS. environment, are characterized using computational chemistry. A bio‐inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non‐cyclical pathways, in which HSS. is generated in the final step instead of HS., show a markedly increased thermodynamic driving force (ca. 70 kJ mol?1) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.  相似文献   

20.
The possibility of estimating equilibrium free‐energy profiles from multiple non‐equilibrium simulations using the fluctuation–dissipation theory or the relation proposed by Jarzynski has attracted much attention. Although the Jarzynski estimator has poor convergence properties for simulations far from equilibrium, corrections have been derived for cases in which the work is Gaussian distributed. Here, we examine the utility of corrections proposed by Gore and collaborators using a simple dissipative system as a test case. The system consists of a single methane‐like particle in explicit water. The Jarzynski equality is used to estimate the change in free energy associated with pulling the methane particle a distance of 3.9 nm at rates ranging from ~0.1 to 100 m s?1. It is shown that although the corrections proposed by Gore and collaborators have excellent numerical performance, the profiles still converge slowly. Even when the corrections are applied in an ideal case where the work distribution is necessarily Gaussian, performing simulations under quasi‐equilibrium conditions is still most efficient. Furthermore, it is shown that even for a single methane molecule in water, pulling rates as low as 1 m s?1 can be problematic. The implications of this finding for studies in which small molecules or even large biomolecules are pulled through inhomogeneous environments at similar pulling rates are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号