首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of crystalline CdSe particles in the thermal degradation of Cd(SePh)2·TMEDA (TMEDA = tetramethylethylenediamine) as a single‐source‐precursor was investigated by in‐situ powder X‐ray diffraction. It was shown that the primary grains were formed in the cubic zinc blende modification. After an increase in particle size by further annealing a phase transition to the thermodynamically favored hexagonal wurtzite type was detected. This behaviour indicates that, according to Ostwald's rule, the primary grains consist of the less stable polymorph due to the lower activation barrier of its formation. When the volume energy of the particles gets dominant over the surface energy, the metastable form is transformed and the system adopts the modification of lowest energy.  相似文献   

2.
The temperature‐composition phase equilibria of the Hg0.8Cd0.2Te‐HgI2 system were investigated between about 100 and 800 °C using Debye‐Scherrer powder X‐ray diffraction techniques, differential thermal analysis, differential scanning calorimetry, and thermochemical and structural calculations. This system is a pseudobinary temperature‐ composition plane in the HgTe‐CdTe‐HgI2 pseudoternary phase diagram. Measurable solid solutions of HgI2 in Hg0.8Cd0.2Te with the cubic zinc blende‐type structure exist between about 290 and 700 °C, with a maximum solubility of 4.9 ± 0.3 mole‐% HgI2 at 363 ± 3 °C. Further addition of HgI2 to HgI2‐saturated Hg0.8Cd0.2Te yields the formation of CdI2, which reduces the mole fraction (x) of CdTe in the Hg1—xCdxTe host lattice. After sufficient HgI2 is added, the host lattice is depleted in CdTe and forms Hg3Te2I2 in addition to CdI2. Phase fields containing the ternary compound Hg3TeI4, which we first observed in the HgTe‐HgI2 system, also exist in the present system. Quaternary analogs of the known ternary compounds Hg3Te2I2 and Hg3TeI4, i.e., Hg3—yCdyTe2I2 and Hg3—yCdyTeI4, were not observed under present experimental conditions.  相似文献   

3.
Optical damping constants due to free carriers of HgSe, Zn x Hg1–x and Cd x Hg1–x Se were estimated from far infrared reflection spectra at 5 and 10 K. The damping mechanism was explained by the Drude type scattering below plasma frequency and by doubly ionized impurity scattering in the higher frequency range.  相似文献   

4.
《Chemphyschem》2003,4(11):1203-1210
The synthesis and magneto‐optical properties of HgTe nanocrystals capped with HgxCd1?xTe(S) alloyed shells have been investigated. The magneto‐optical measurements included the use of optically detected magnetic resonance (ODMR) and circular polarized photoluminescence (CP‐PL) spectroscopy. The PL spectra suggest the existence of luminescence events from both the core HgTe and the HgxCd1?xTe(S) shells. The continuous‐wave (cw) and time‐resolved ODMR measurements revealed that the luminescence at the shell regime is associated with a trap‐to‐band recombination emission. The electron trap is comprised of a Cd–Hg mixed site, confirming the existence of an alloyed HgxCd1?xTe(S) composition. The ODMR data and the CP‐PL measurements together revealed the g‐values of the trapped electron and the valence band hole.  相似文献   

5.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

6.
CdSe quantum dots stabilised by thiomalic acid have been synthesised by an aqueous biphasic ligand exchange reaction in air. The materials are completely water‐soluble and were found to be stable over a long time. X‐ray diffraction and transmission electron microscopy reveal the formation of CdSe nanocrystals with cubic structure (a=0.6077 nm; spatial group: F‐43m). The average particle size is about 5 nm. Energy dispersive X‐ray analysis shows that the nanocrystals are nonstoichiometric, with a Cd/Se ratio varying between 60/40 and 70/30, and indicates the presence of Cd2+ ions at the nanocrystal surface. Diffuse reflectance infrared Fourier transform measurements suggest that thiomalic acid chelates CdSe through the thiol group and one carboxylic function, while the second COOH group is semi‐free. A complex‐like structure is proposed, in which thiomalic acid forms a five‐membered chelate ring with the Cd2+ ions present on the nanocrystal surface. Chelate effect accounts for the easiness of ligand exchange and is expected to additionally stabilise the nanosystem.  相似文献   

7.
Hydrothermal Synthesis and Crystal Structure of the Coinage Metal Mercury Chalcogenide Halides CuHgSeBr, AgHgSBr, and AgHgSI The hydrothermal reaction of CuBr and HgSe in concentrated aqueous HBr as solvent at 285 °C yields red crystals of CuHgSeBr, the hydrothermal reaction of AgX (X = Br, I) and HgS in half‐concentrated aqueous HX (X = Br, I) as solvent at 300/400 °C yields yellow crystals of AgHgSBr and AgHgSI. The compounds crystallize isotypically (orthorhombic, Pmma, a = 1020.1(3) pm, b = 431.2(1) pm, c = 925.6(3) pm for CuHgSeBr, a = 964.8(8) pm, b = 466.1(4) pm, c = 942.6(6) pm for AgHgSBr und a = 1015.9(2) pm, b = 464.77(5) pm, c = 984.9(2) pm for AgHgSI, Z = 4). The structures consist of plane folded Hg–Y chains connected by pairs of distorted Y2X2 terahedra sharing the X–X‐edge (M = Cu, Ag; X = Br, I; Y = S, Se). Atoms of the monovalent metals M have a strongly distorted tetrahedral coordination of two halogen and two chalcogen atoms. The new structure type shows distinct differences in the arrangement of the Hg–Y chains in comparision to the already known CuHgSeCl, but represents the superposition structure of the order‐disorder phase γ‐Hg3S2Cl2.  相似文献   

8.
氧化物直接转化法制备汞的硫属化合物纳米材料   总被引:4,自引:0,他引:4  
以低毒性的HgO与S,Se,Te单质为原料,乙二胺为溶剂,在室温下合成了汞的硫属化合物纳米材料HgS,HgSe和HgTe,并通过XRD,TEM和XPS对产物进行了表征.结果表明,所合成的产物为六方相α-HgS和立方闪锌矿结构的HgSe和HgTe,且纯度高,粒度分布均匀.对反应的机理进行了初步探讨.  相似文献   

9.
The composition and interfacial region has been studied for CdTe and anodic oxides deposited/grown on Hg1?xCdxTe using Rutherford backscattering spectroscopy. The interfacial region for the CdTe/Hg1?xCdxTe sample was found to be ~35 nm, in which out‐diffusion of Hg was observed. The interfacial region in the case of anodic oxides/Hg1?xCdxTe was found to be very small, <10 nm (of the order of experimental resolution), in which the Hg concentration increases steeply and the oxygen concentration decreases. Passivant and bulk compositions also have been obtained in both cases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The reaction of [1,3‐bis(2‐ethoxy)benzene]triazene, [ HL ], with Hg(SCN)2 and Hg(CH3COO)2, resulted in the formation of the complexes [Hg L (SCN)] ( 1 ) and [Hg L 2] · CH3OH ( 2 ). They were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. The structure of compound 1 consists of two independent complexes in which the HgII atoms are stacked along the crystallographic a axis to form infinite chains. Each HgII atom is chelated by one L ligand and one SCN ligand, whereas in compound 2 , the HgII atom is surrounded by two L ligands. In addition, 1D chains formed by metal–π interactions are connected to each other by C–H ··· π stacking interactions in the structure of 1 , which results in a 2D architecture. An interesting feature of compound 2 is the presence of C–H ··· π edge‐to‐face interactions.  相似文献   

11.
Umbrella‐sampling molecular‐dynamics simulations were performed to investigate the water‐exchange reactions of zinc(II), cadmium(II), and mercury(II) ions in aqueous solution. The dissociation of a coordinating water molecule to the M? O distance at 3.34, 3.16, and 3.26 Å for ZnII, CdII, and HgII, respectively, leads the system to a transition state. For ZnII, the first hydration shell is occupied by five spectator water molecules in the transition state, indicating that the water‐exchange reaction proceeds via a dissociative mode of activation. In contrast, the number of spectator water molecules of 5.85 and 5.95 for CdII and HgII, respectively, suggests an associative exchange for these larger metal ions. The average M? O distance of the spectator molecules is shortened by 0.06 Å for the dissociative exchange of ZnII, while it is elongated by 0.04 and 0.03 Å for CdII and HgII, respectively. The water‐exchange rate constants of 4.1×108, 6.8×108, and 1.8×109 s?1 are estimated for ZnII, CdII, and HgII, respectively, at 298 K in terms of the transition‐state theory based on the assumption of a transmission coefficient of unity.  相似文献   

12.
The one‐pot synthesis of water‐soluble and biologically compatible yellow CdSe quantum dots (QDs) featuring the use of glutathione (GSH) as the capping and reducing agent was achieved under aqueous conditions at 150 °C. The synthesized yellow CdSe QDs with quantum yield (QY) up to 20% exhibit zinc blende cubic structure particles with an average diameter of 4‐5 nm. It was found that both molar ratio of Se/Cd and reaction time had a significant effect on size distribution of GSH‐CdSe QDs. Meanwhile, the interaction of QDs bioconjugated to bovine hemoglobin (BHb) was studied by absorption and fluorescence(FL) spectra. With addition of BHb, the FL intensity of CdSe QDs largely quenched due to the static mechanism. The linear range is 5.0 × 10?8 mol/L to 3.0 × 10?6 mol/L, and the correlation coefficient is 0.9991, suggesting that could be used as a probe to label biological molecules and bacterial cells.  相似文献   

13.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

14.
Polycationic Hg‐Pnictide Frameworks with a Novel Kind of Filling in the Structures of Hg3As2TlCl3 and Hg3Sb2TlBr3 Hg3As2TlCl3 and Hg3Sb2TlBr3 were prepared from mixtures of Hg2X2, HgX2 (X = Cl, Br), As or Sb and Tl in sealed evacuated glass ampoules in temperature gradients 330 °C → 290 °C for Hg3As2TlCl3 (red, transparent crystals) and 290 °C → 260 °C for Hg3Sb2TlBr3 (black crystals). The structures of the diamagnetic compounds were determined based on single crystal X‐ray diffraction data. Both compounds crystallize isotypically in the orthorhombic space group Pbcm with Z = 4 and the lattice constants a = 629.2(5) pm, b = 1234.1(7) pm and c = 1224.8(9) pm for Hg3As2TlCl3 and a = 661.0(4) pm, b = 1311.2(9) pm and c = 1307.1(2) pm for Hg3Sb2TlBr3. The structures can be described either as a cubic closest packing of As2/Sb2 dumb‐bells and halide anions with all octahedral interstices filled with Hg2+ and Tl+, or as a polycationic framework (Hg3Y2)2+ (Y = As, Sb) consisting of pnictide‐pnictide dumbbells each connected by six Hg atoms to a three dimensional porous arrangement. The centers of the cavities are occupied by Tl+ ions which are coordinated by six halide ions in distorted octahedral form. These TlX6 octahedra share corners in all directions in the motive of the ReO3 structure type. This new structure type shows a close relationship to the cubic family of compounds of the general formula (Hg6Y4)[MX6]X (Y = As, Sb; M = Mo, Ti, Bi, Sb; X = Cl, Br). The halide ions are connected to the Hg atoms of the polycationic network and to the Tl+ ions. Extended Hueckel calculations were used to explain the bonding character of the thallium–halide and mercury–halide bonds.  相似文献   

15.
The electronic properties of wurtzite/zinc‐blende (WZ/ZB) heterojunction GaN are investigated using first‐principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.  相似文献   

16.
Volvox‐like CdxZn1?xS solid solutions with a cubic zinc blend structure were synthesized through a template‐free ethylene glycol process. Cd(Ac)2 ? 2 H2O, Zn(Ac)2 ? 2 H2O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox‐like spherical geometry, but also exerted vigorous domination for existence of cubic‐phase CdxZn1?xS nanostructures. As‐prepared volvox‐like CdxZn1?xS nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible‐light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m2 g?1).  相似文献   

17.
Semiconducting heterostructures have been widely applied in photocatalytic hydrogen evolution due to their variable band gaps and high energy conversion efficiency. As typical semiconducting heterostructures, ZnO/ZnS heterostructured nanorod arrays (HNRAs) have been obtained through a simple anion‐exchange process in this work. Structural characterization indicates that the heterostructured nanorods (HNRs) are all composed of hexagonal wurtzite ZnO core and cubic zinc‐blende ZnS shell. As expected, the as‐obtained one‐dimensional heterostructures not only lower the energy barrier but also enhance the separation ability of photogenerated carriers in photocatalytic hydrogen evolution. Through comparisons, it is found that 1D ZnO/ZnS HNRAs exhibit much better performance in photocatalytic hydrogen evolution than 1D ZnO nanorod arrays (NRAs) and 1D ZnS NRAs. The maximum H2 production is 19.2 mmol h?1 for 0.05 g catalyst under solar‐simulated light irradiation at 25 °C and the corresponding quantum efficiency is 13.9 %, which goes beyond the economical threshold of photocatalytic hydrogen evolution technology.  相似文献   

18.
The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non‐radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd1?xZnxSe1?ySy/ZnS core/graded shell–shell QDs with suppressed re‐absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re‐absorption and a constrained Stokes shift, the as‐synthesized CdSe/Cd1?xZnxSe1?ySy/ZnS QDs exhibited the suppressed re‐absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift‐engineered QDs with suppressed re‐absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity‐time symmetry materials and devices.  相似文献   

19.
ZnS nanorods doped with 0-15 mol% of Cu have been prepared by simple solvothermal process. With gradual increase in the Cu concentration, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed. Twins and stacking faults were developed due to atomic rearrangement in the heavily doped ZnS nanorods during phase transformation. UV-vis-NIR absorbance spectroscopy ruled out the presence of any impure Cu-S phase. The doped ZnS nanorods showed luminescence over a wide range from UV to near IR with peaks at 370, 492-498, 565 and 730 nm. The UV region peak is due to the near-band-edge transition, whereas, the green peak can be related to emission from elementary sulfur species on the surfaces of the nanorods. The orange emission at 565 nm may be linked to the recombination of electrons at deep defect levels and the Cu(t2) states present near the valence band of ZnS. The near IR emission possibly originated from transitions due to deep-level defects.  相似文献   

20.
The novel, stable, one‐dimensional coordination polymer [Hg3(dmap)6(μ‐OAc)2]n{(ClO4)4}n ( 1 ; dmap = 4‐(dimethylamino)pyridine) has been synthesized and characterized. Single‐crystal X‐ray analysis showed that the coordination sphere of the two pertinent, zig‐zag‐oriented HgII‐atoms is different. One type of Hg‐atom in the N2O4Hg HgN2O4 environment is seven‐coordinate, with a weak Hg Hg interaction. The other type of HgII‐atom in the trans‐HgN2O4 units is six‐coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号