首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

2.
Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals with different content of dopant were successfully prepared via a facile hydrothermal method. The purity, morphology, element distribution, chemical state and up‐conversion (UC) photoluminescence (PL) of PbTiO3 nanocrystals affected by Ho3+ dopant are investigated systematically. X‐ray diffraction (XRD) results illustrate that PbTiO3 samples with the doping Ho3+ concentration ranging from 0 to 5 mol‐% are perovskite structure. The doping Ho3+ ions have no change on the crystal structure of perovskite PbTiO3. Owing to the non‐equivalent substitution of Ho3+ to Ti4+ in PbTiO3, the particle size of Ho3+/Yb3+ co‐doped PbTiO3 samples is decreased as well as the particle agglomeration is detected. Moreover, Ho and Yb ions have uniform distributions in the PbTiO3 nanoparticles as the presence of Ho3+ and Yb3+ cations. The up‐conversion spectra demonstrate that Ho/Yb co‐doped PbTiO3 samples have up‐conversion emissions centered at 550 nm, 660 nm and 755 nm, corresponding to the transitions of 5F4(5S2)→5I8, 5F55I8 and 5S2(5F4)→5I7 of Ho3+ ions. Additionally, the effect of temperature on the UC PL property of Ho3+/Yb3+ co‐doped PbTiO3 system is further investigated. The sensitivity and the trend of Ho3+/Yb3+ co‐doped PbTiO3 samples in temperature from 298 k to 493K are calculated on the basis of fluorescence intensity ratio (FIR) method. Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals are verified the high potential in the optical temperature sensing.  相似文献   

3.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

4.
《Analytical letters》2012,45(15):2594-2600
A co-doped LiNb0.3Ta0.7O3:Er3+,Yb3+ ceramic was prepared by a high temperature solid state procedure. Under the excitation of 980 nm laser radiation, intense 660 nm red light and 550 nm green light emissions corresponding to the 4F9/24I15/2 and 2H11/2/4S3/24I15/2 transitions of Er3+ were observed. The change of Yb3+ concentration has a more significant influence on luminous intensity than the Er3+ concentration. The emission of red and green lights is attributed to a two-photon process. The upconversion luminescence mechanisms were analyzed in detail.  相似文献   

5.
Er3+–Yb3+ co‐doped Lu3Ga5O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb3+ concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near‐infrared light. The decay curves for the (4S3/2, 2H11/2) and 4F9/2 levels of the Er3+ions exhibit a non‐exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb3+ concentration from 1.0 to 10.0 mol %. The non‐exponential decay curves are well fitted to the Inokuti–Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole–quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red‐to‐green intensity ratio of Er3+ ions was observed with an increase in Yb3+ concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two‐photon upconversion processes for the green and red emissions.  相似文献   

6.
A set of new triple molybdates, LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45, was successfully manufactured by the microwave-accompanied sol–gel-based process (MAS). Yellow molybdate phosphors LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 with variation of the LixNa1-x (x = 0, 0.05, 0.1, 0.2, 0.3) ratio under constant doping amounts of Ho3+ = 0.05 and Yb3+ = 0.45 were obtained, and the effect of Li+ on their spectroscopic features was investigated. The crystal structures of LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) at room temperature were determined in space group I41/a by Rietveld analysis. Pure NaCaGd0.5Ho0.05Yb0.45(MoO4)3 has a scheelite-type structure with cell parameters a = 5.2077 (2) and c = 11.3657 (5) Å, V = 308.24 (3) Å3, Z = 4. In Li-doped samples, big cation sites are occupied by a mixture of (Li,Na,Gd,Ho,Yb) ions, and this provides a linear cell volume decrease with increasing Li doping level. The evaluated upconversion (UC) behavior and Raman spectroscopic results of the phosphors are discussed in detail. Under excitation at 980 nm, the phosphors provide yellow color emission based on the 5S2/5F45I8 green emission and the 5F55I8 red emission. The incorporated Li+ ions gave rise to local symmetry distortion (LSD) around the cations in the substituted crystalline structure by the Ho3+ and Yb3+ ions, and they further affected the UC transition probabilities in triple molybdates LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45. The complex UC intensity dependence on the Li content is explained by the specificity of unit cell distortion in a disordered large ion system within the scheelite crystal structure. The Raman spectra of LixNa1-xCaGd0.5(MoO4)3 doped with Ho3+ and Yb3+ ions were totally superimposed with the luminescence signal of Ho3+ ions in the range of Mo–O stretching vibrations, and increasing the Li+ content resulted in a change in the Ho3+ multiplet intensity. The individual chromaticity points (ICP) for the LiNaCaGd(MoO4)3:Ho3+,Yb3+ phosphors correspond to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.  相似文献   

7.
The intensity parameters of holmium in sodium, barium and zinc tellurite glasses were obtained from the absorption spectra. Using these parameters and the matrix elements of Ho3+, transition probabilities and branching ratios from the excited states (5F4, 5S2), 5F5, 5I4, 5I5 and 5I6 were calculated. Quantum efficiencies for the (5F4, 5S2) state were obtained and the multiphonon transition rates calculated at room temperature. Non-radiative multiphonon relaxations were obtained from the (5F4, 5S2) level. The relaxation increased in the order of zinc, barium, sodium, and is assumed to be dependent on the local site symmetry of Ho3+ in glass.  相似文献   

8.
Tb3+, Yb3+, Tm3+, Er3+, and Ho3+ doped Ca3(PO4)2 were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb3+-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb3+ content is comparable with that of the commercial Zn2SiO4:Mn2+ green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb3+, Tm3+, Er3+, and Ho3+ doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb3+-Ho3+, Yb3+-Er3+, and Yb3+-Tm3+ in Ca3(PO4)2, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb3+-Tm3+-Er3+-Ho3+ in Ca3(PO4)2, in which the cross-relaxation process between Er3+ and Tm3+, producing the 1D2-3F4 transition of Tm3+, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams.  相似文献   

9.
To develop new emission-tunable upconversion (UC) phosphors, the Sr3AlO4F:5%Yb3+, xEr3+, yHo3+ (0 ≤ x ≤ 1%, 0 ≤ y ≤ 1%) samples were prepared by conversional solid-state reaction method, and their luminescence properties upon 980 nm excitation were studied. Upon 980 nm excitation, Yb3+-Er3+ codoped Sr3AlO4F shows a predominant emission peak between 645 and 700 nm which is attributed to the 4F9/2-4I15/2 transition of Er3+, and the Er3+ green emissions have been almost quenched. In this case, the yellowish green emitting light is obtained. The possible reason was interpreted by the energy level diagram and the proposed UC mechanism. For Yb3+-Ho3+ codoped Sr3AlO4F, three emissions are observed obviously which are all derived from the Ho3+ ion. The corresponding chromaticity coordinates indicate a red emission has been gained. To realize the tunable emission, the typical Sr3AlO4F:5%Yb3+, 0.2%Er3+, 1%Ho3+ phosphor was developed, and its emission spectrum includes the emission peaks of both Er3+ and Ho3+. Correspondingly, the sample gives a yellow emission.  相似文献   

10.
Visible up-conversion emissions at (435, 545, 580, 675 and 690 nm) and (437, 547 575 and 675 nm) have been observed from the sol-gel derived nano-crystalline Ho3+: BaTiO3 powders and thin films respectively, under 808 nm laser diode excitation emissions. Combined with the energy level structure of Ho3+ ions and the kinetics of the visible emissions, the up-conversion mechanism has been analyzed and explained. The blue, green and red emissions of both samples has been attributed to the ground state-directed transition from (5F1), (5S2) and (5F5), which are populated through excited state absorption (ESA) for 808 nm excitation. Nano-structure pure barium titanate and doped with different concentrations of Ho3+ ions in the from of powder and thin film have been prepared by sol-gel technique, using barium acetate (Ba(Ac)2), and titanium butoxide (Ti(C4H9O)4), as precursors. The thin films were prepared by sol-gel spin coating method. The as-grown thin films and powders were found to be amorphous, which crystallized to the tetragonal phase after heating at 750°C in air for 30 minutes. The crystallite sizes of the thin film and powder both doped with 4% Ho3+ ions was found to be equal to 11 and 16 nm, respectvely.  相似文献   

11.
《Solid State Sciences》2012,14(2):236-240
LaGaO3:Tm3+, Yb3+ powder was synthesized by a high-energy ball milling (HEB) and a conventional solid state reaction (SSR). The X-ray diffraction patterns confirmed the LaGaO3:Tm3+, Yb3+ powder phosphors to have an orthorhombic structure. The spectrum consisted of 1G4 → 3H6, weak 1G4 → 3F4, and intense 3H4 → 3H6 transition bands within the f12 configuration of Tm3+, together with the 2F5/2 → 2F7/2 transition of Yb3+. Up-converted emission of the LaGaO3:Tm3+, Yb3+ powders were observed under laser diode excitation of 975 nm. The PL intensity of the HEB-LaGaO3:Tm3+, Yb3+ powders sintered at 1300 °C were higher than those of all LaGaO3:Tm3+, Yb3+ powder samples examined. The energy transition probability of HEB-LaGaO3:Tm3+, Yb3+ powders are higher than that of the SSR-LaGaO3:Tm3+, Yb3+ powders. Compared to the solid state reaction method, synthesis by high-energy ball milling is simple and provides improved crystallinity of the host.  相似文献   

12.
Samples of the Ca3Sc2Si3O12 (CSS) host singly doped with Eu2+ or Yb3+, doubly doped with Eu2+ and Yb3+, and triply doped with Ce3+, Eu2+ and Yb3+ were synthesized by a sol–gel combustion process under reducing conditions. Unlike previous reports of Eu2+→Yb3+ energy transfer in other systems, the energy transfer is resonant in the CSS host and the transfer efficiency reaches 100 % for lightly doped samples. The transfer mechanism is multipolar rather than electron transfer for the sample compositions employed herein. The emission intensity of Yb3+ is further enhanced by co‐doping with Ce3+ in addition to Eu2+. The quantum efficiencies of the doped materials range between 9 % and 93 %.  相似文献   

13.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

14.
《Comptes Rendus Chimie》2002,5(11):725-729
In this work, we have investigated the existence of energy transfer among Nd3+ ions in fluoroarsenate glasses of the Na4As2O7, BaF2, YF3 system with different Nd3+ concentrations (0.5, 2, 3, 4, and 5 mol%) by using time-resolved fluorescence line narrowing spectroscopy. The spectral features of the time resolved fluorescence line narrowing 4F3/24I9/2 emission spectra obtained under resonant excitation reveal the existence of spectral migration of excitation among the Nd3+ ions. The analysis of the time evolution of the 4F3/24I9/2 narrowed emission shows that the electronic mechanism responsible for the ion–ion interaction can be identified as a dipole–dipole energy transfer process.  相似文献   

15.
The Ho3+/Yb3+ co-doped α-NaYF4 single crystal was grown successfully for the first time by a modified Bridgman method in which KF was used as assisting flux and a large temperature gradient (70-90 oC/cm) of solid-liquid interface was adopted. Upconversion emissions at green ~544 nm, red ~657 and ~751 nm were obtained under 980 nm laser diode excitation. The intensity at ~544 nm was much stronger than those of ~657 and ~751 nm. The mechanisms of the upconversion emissions were investigated by studying the relationship between the upconversion intensity and pump power. The optimized Yb3+ concentration was about 8.08 mol% when Ho3+ concentration was hold at about 1.0 mol%. The results showed that Ho3+/Yb3++ doped α-NaYF4 single crystal was a possible candidate upconversion material for the green solid-state laser.  相似文献   

16.
In this paper, we report a general approach to enhance the upconversion (UC) luminescence of Er3+ doped oxides phosphors by Yb3+–MoO4 2? dimer sensitizing, which induced strong green UC emissions under the 976 nm laser diode excitation. By codoping of Yb3+ and Mo6+ in the Er3+ doped TiO2 and ZnO, the green UC emissions intensity can be selectively increased about 10 and 500 times than those of Er3+–Yb3+ codoped TiO2 and ZnO, respectively. The high excited state energy transfer between |2F7/2, 3T2> state of Yb3+–MoO4 2? dimer and 4F7/2 level of Er3+ significantly avoids the nonradiative decay processes happened at lower energy levels of Er3+, and then increases the green UC emissions efficiently. The proposed Yb3+–MoO4 2? dimer sensitizing has been realized as an efficient way to enhance the green UC emissions in other Er3+ doped oxides phosphors. It is expected that the selective enhanced green UC emissions sensitized by Yb3+–MoO4 2? dimer in Er3+ doped oxides phosphors can greatly extend their scope of applications.  相似文献   

17.
This paper reports on comparative investigation of structure and luminescence properties of tetragonal LiYF4 and BaYF5, and hexagonal NaYF4 phosphors codoped with Er3+/Yb3+ by a facile hydrothermal synthesis. The products were characterized by X-ray diffractometer, scanning electron microscope, and photoluminescence spectroscopy. Intense visible emissions centered at around 525, 550 and 650 nm, originated from the transitions of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 of Er3+, respectively, have been observed in all the samples upon excitation with a 980 nm laser diode, and the involved mechanisms have been explained. Based on the green up-conversion emission performance, the Yb3+ concentrations of Er3+/Yb3+-codoped LiYF4, BaYF5, and NaYF4 phosphors have been optimized to be 10, 20, and 20 mol.%, respectively. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photon contribute to up-conversion of the green–red emissions.  相似文献   

18.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

19.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

20.
Er3+-doped tellurite glass containing silver nanoparticles (NPs) has been synthesized. Detailed structural and optical characterizations have been carried out. Infrared to visible frequency upconversion (UC) emission has been observed in Er3+-doped tellurite glass on pumping with the 976 nm radiation. Further, an enhancement in UC emission intensity of green bands (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) of Er3+ ion has been observed up to four times in presence of silver NPs in the glass annealed at 240 °C for 40 h. Though, there is enhancement in intensity in the red band (4F9/2 → 4I15/2) also but it is smaller. The enhancement in fluorescence intensity is attributed to local field effect due to the silver NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号