首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The volume fraction plays an important role in phase segregated soft matters. We demonstrate here that at high fullerene volume fraction in soft chain‐tethered‐fullerene dyads, different two‐dimensional (2D) crystal‐constructed smectic‐like lamella liquid crystalline (LC) phases can be formed with triple‐layer (ST phase) or quadruple‐layer (SQ phase) stacking of fullerenes in 2D crystals. The combination of 2D crystal and LC properties in one system affords these fullerene dyads controlled electron mobility in the range of 10?5–10?3 cm2 V?1 s?1 at room temperature (ST phase), by regulating the insulated soft layer thickness between 2D crystals via the manipulation of fullerene volume fraction.  相似文献   

2.
A discotic liquid‐crystalline (LC) material, consisting of a planarized triphenylborane mesogen, was synthesized. X‐ray diffraction analysis confirmed that this compound forms a hexagonal columnar LC phase with an interfacial distance of 3.57 Å between the discs. At ambient temperature, this boron‐centered discotic liquid crystal exhibited ambipolar carrier transport properties with electron and hole mobility values of approximately 10?3 and 3×10?5 cm2 V?1 s?1, respectively.  相似文献   

3.
The preparation of two liquid crystals composed of a redox‐active tetraazanaphthacene (TANC) framework is reported. The materials form smectic A (SmA) thin‐film liquid‐crystalline (LC) phases over a wide temperature range. Cyclic voltammetry analysis revealed that LC TANCs behave as organic electron acceptors. The electron mobilities of the thin films were determined by time‐ of‐flight (TOF) measurements, which are the order of 10?4 cm2 V?1 s?1 in the SmA LC phase. This value is two orders of magnitude larger than those of amorphous organic semiconductors. To the best of our knowledge, very few reports exist on the electron‐transporting behaviors of LC N‐heteroacene semiconductors.  相似文献   

4.
We report herein a series of tetrablock‐mimic azobenzene‐containing [60]fullerene dyads that form supramolecular liquid crystals (LCs) from phase‐segregated two‐dimensional (2D) crystals. The unique double‐, triple‐, and quadruple‐layer packing structure of fullerenes in the 2D crystals leads to different smectic supramolecular LC phases, and novel LC phase transitions were observed upon changes in the fullerene packing layer number in the 2D crystals. Interestingly, by combining the LC properties with 2D crystals, these materials show excellent electron mobility in the order of 10−3 cm2 V−1 s−1, despite their relatively low fullerene content. Our results provide a novel method to manipulate 2D crystal layer thickness, with promising applications in optoelectronic devices.  相似文献   

5.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

6.
Recently, diketopyrrolopyrrole (DPP)‐based materials have attracted much interest due to their promising performance as a subunit in organic field effect transistors. Using density functional theory and charge‐transport models, we investigated the electronic structure and microscopic charge transport properties of the cyanated bithiophene‐functionalized DPP molecule (compound 1 ). First, we analyzed in detail the partition of the total relaxation (polaron) energy into the contributions from each vibrational mode and the influence of bond‐parameter variations on the local electron–vibration coupling of compound 1 , which well explains the effects of different functional groups on internal reorganization energy (λ). Then, we investigated the structural and electronic properties of compound 1 in its isolated molecular state and in the solid state form, and further simulated the angular resolution anisotropic mobility for both electron‐ and hole‐transport using two different simulation methods: (i) the mobility orientation function proposed in our previous studies (method 1); and (ii) the master equation approach (method 2). The calculated electron‐transfer mobility (0.00003–0.784 cm2 V?1 s?1 from method 1 and 0.02–2.26 cm2 V?1 s?1 from method 2) matched reasonably with the experimentally reported value (0.07–0.55 cm2 V?1 s?1). To the best of our knowledge, this is the first time that the transport parameters of compound 1 were calculated in the context of band model and hopping models, and both calculation results suggest that the intrinsic hole mobility is higher than the corresponding intrinsic electron mobility. Our calculation results here will be instructive to further explore the potential of other higher DPP‐containing quinoidal small molecules. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
A simple azulene‐containing squaraine dye ( AzUSQ ) showing bandgap of 1.38 eV and hole mobility up to 1.25×10?4 cm2 V?1 s?1 was synthesized. With its low bandgap, an organic photovoltaic (OPV) device based on it has been made that exhibits an impressive open‐circuit voltages (Voc) of 0.80 V. Hence, azulene might be a promising structural unit to construct OPV materials with simultaneous low bandgap, high hole mobility and high Voc.  相似文献   

8.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

9.
Weak intermolecular interaction in organic semiconducting molecular crystals plays an important role in molecular packing and electronic properties. Here, four five‐ring‐fused isomers were rationally designed and synthesized to investigate the isomeric influence of linear and angular shapes in affecting their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors showed mobility order of 5,7‐ICZ (3.61 cm2 V?1 s?1) >5,11‐ICZ (0.55 cm2 V?1 s?1) >11,12‐ICZ (ca. 10?5 cm2 V?1 s?1) and 5,12‐ICZ (ca. 10?6 cm2 V?1 s?1). Theoretical calculations based on density functional theory (DFT) and polaron transport model revealed that 5,7‐ICZ can reach higher mobilities than the others thanks to relatively higher hole transfer integral that links to stronger intermolecular interaction due to the presence of multiple NH???π and CH???π(py) interactions with energy close to common NH???N hydrogen bonds, as well as overall lower hole‐vibrational coupling owing to the absence of coupling of holes to low frequency modes due to better π conjugation.  相似文献   

10.
In contrast with their dimeric homologue, triply fused zinc porphyrin trimer–pentamer, as extra‐large π‐extended mesogens, assemble into columnar liquid crystals (LCs) when combined with 3,4,5‐tri(dodecyloxy)phenyl side groups ( 3 PZn – 5 PZn , Figure 1 ). Their LC mesophases develop over a wide temperature range, namely, 41–280 °C (on heating) for 5 PZn , and all adopt an oblique columnar geometry, typically seen in columnar LC materials involving strong mesogenic interactions. These LC materials are characterized by their wide light‐absorption windows from the entire visible region up to a near infrared (NIR) region. Such ultralow‐bandgap LC materials are chemically stable and serve as hole transporters, in which 5 PZn gives the largest charge carrier mobility (2.4×10?2 cm V?1 s?1) among the series. Despite a big dimensional difference, they coassemble without phase separation, in which the resultant LC materials display essentially no deterioration of the intrinsic conducting properties.  相似文献   

11.
Cyanotolane or fluorotolane mesogens were for the first time introduced into the fumarate monomer under basic conditions. All fumarate monomers undergo radical polymerization in benzene in the presence of dimethyl 2,2′‐azobis(isobutyrate) as an initiator at 60 °C, affording the corresponding poly(fumarate)s with a molecular weight (Mn) of ~ 104 and an exceptionally narrow polydispersity. The phase behaviors of the fumarate monomers and the correspoding poly(fumarate)s were comprehensively investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction (XRD) analysis. For the fumarate monomers, fluorotolane derivatives were prone to form higher‐order liquid crystal phases such as a smectic phase, while cyanotolane derivatives tended to show a wide mesophase temperature range, depending on the alkyl chain spacer length. Very surprisingly, these features dramatically weakened when they were polymerized. The mesophase temperature ranges became narrow and completely disappeared for the poly(fumarate)s with a shorter alkyl chain spacer. A nematic phase representing lower‐order arrangements became a predominant liquid crystal phase for the poly(fumarate) carrying cyanotolane mesogens. Only the poly(fumarate) carrying fluorotolane mesogens with a longer alkyl chain spacer displayed the characteristic XRD patterns of the smectic B phase. The transient photocurrent measurements of the fumarate monomer with cyanotolane mesogens displayed a hole mobility of the order of 10?4–10?5 cm2 V?1 s?1 at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5101–5114, 2008  相似文献   

12.
Conjugated molecules with low lying LUMO levels are demanding for the development of air stable n‐type organic semiconductors. In this paper, we report a new A‐D‐A′‐D‐A conjugated molecule ( DAPDCV ) entailing diazapentalene (DAP) and dicyanovinylene groups as electron accepting units. Both theoretical and electrochemical studies manifest that the incorporation of DAP unit in the conjugated molecule can effectively lower the LUMO energy level. Accordingly, thin film of DAPDCV shows n‐type semiconducting behavior with electron mobility up to 0.16 cm2?V?1?s?1 after thermal annealing under N2 atmosphere. Moreover, thin film of DAPDCV also shows stable n‐type transporting property in air with mobility reaching 0.078 cm2?V?1?s?1.  相似文献   

13.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

14.
V‐shaped Tröger′s base core has been investigated as a central linking unit in the synthesis of new charge‐transporting materials for optoelectronic applications. The studied molecules have been synthesized in two steps from relatively inexpensive starting materials, and demonstrate high glass transition temperatures, good stability of the amorphous state, and comparatively high hole drift mobility (up to 0.011 cm2 V?1 s?1).  相似文献   

15.
Three soluble and stable thienoacene‐fused pentalene derivatives ( 1 – 3 ) with different π‐conjugation lengths were synthesized. X‐ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field‐effect transistors (OFETs) were also investigated. The highest field‐effect hole mobility of 0.016, 0.036 and 0.001 cm2 V?1 s?1 was achieved for solution‐processed thin films of 1 – 3 , respectively.  相似文献   

16.
A novel cross‐linkable electron‐transport material has been designed and synthesized for use in the fabrication of solution‐processed OLEDs. The material exhibits a low LUMO level of ?3.51 eV, a high electron mobility of 1.5×10?5 cm2 V?1 s?1, and excellent stability. An average 9.3 % shrinkage in film thickness was observed for the film after thermal curing. A maximum external quantum efficiency (EQE) of 15.6 % (35.0 cd A?1) was achieved for blue‐phosphorescent OLEDs by spin‐coating and 13.8 % (31.0 cd A?1) for an ink‐jet‐printed device, both of which are better than the EQE of a control device prepared by vacuum‐deposition (see figure).  相似文献   

17.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm?2 V?1 s?1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.  相似文献   

18.
Direct arylation represents an attractive alternative to the conventional cross‐coupling methods because of its step‐economic and eco‐friendly advantages. A set of simple D–A oligomeric molecules ( F‐3 , F‐5 , and F‐7 ) by integrating thiophene (T) and tetrafluorobenzene (F4B) as alternating units through a direct arylation strategy is presented to obtain high‐performance charge‐transporting materials. Single‐crystal analysis revealed their herringbone packing arrangements driven by intensive C?H???π interactions. An excellent hole‐transporting efficiency based on single‐crystalline micro‐plates/ribbons was witnessed, and larger π‐conjugation and D–A constitution gave higher mobilities. Consequently, an average mobility of 1.31 cm2 V?1 s?1 and a maximum mobility of 2.44 cm2 V?1 s?1 for F‐7 were achieved, providing an effective way to obtain high‐performance materials by designing simple D–A oligomeric systems.  相似文献   

19.
Two diketopyrrolopyrrole (DPP)‐based donor–acceptor (D–A) conjugated molecules, DPP‐F and DPP‐2F, which contain E‐(1,2‐difluorovinyl) moieties, are reported. The LUMO energies of DPP‐F and DPP‐2F were estimated to be ?3.49 and ?3.70 eV, respectively, based on their redox potentials and absorption spectral data; these values were clearly lowered because of the incorporation of electron‐withdrawing E‐(1,2‐difluorovinyl) moieties. Organic field‐effect transistors (OFETs) with thin films of DPP‐F and DPP‐2F were successfully fabricated with conventional techniques. Based on the respective transfer and output characteristics measured in an inert atmosphere, thin films of DPP‐2F display ambipolar semiconducting behavior with hole and electron mobilities reaching 0.42 and 0.80 cm2 V?1 s?1, respectively. The as‐prepared OFET of DPP‐2F already shows high hole and electron mobilities that are not influenced remarkably by thermal annealing. For thin films of DPP‐F, only p‐type semiconducting behavior was observed in both an inert atmosphere and air, and the hole mobility increased to 0.1 cm2 V?1 s?1 after thermal annealing. XRD and AFM studies were performed with thin films of DPP‐F and DPP‐2F after annealing at different temperatures.  相似文献   

20.
Polygon‐like [2+2]‐ and [3+3]‐type metal complexes were prepared from dipyrrin dimers connected by acute‐angled spacers. The electrical conduction depends strongly on the packing alignment of the compounds, revealing the presence of effective hopping pathways for holes with relatively high mobility up to 0.11 cm2 V?1 s?1 along the aligned axis of [3+3]‐type metal‐bridged assemblies. These observations correlated with the geometrical control of the π‐conjugated metal complexes in the cyclic structures, which enables their ordered arrangement in the assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号