首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonyl–ene reactions of 2,3‐diketoesters catalyzed by [Cu{(S,S)‐tBu‐box}](SbF6)2 [box=bis(oxazoline)] generate chiral α‐functionalized α‐hydroxy‐β‐ketoesters in up to 94 % yield and 97 % ee. The 2,3‐diketoesters are conveniently accessed from the corresponding α‐diazo‐β‐ketoester, and a catalyst loading as low as 1.0 mol % can be achieved.  相似文献   

2.
The heterospirocyclic N‐methyl‐N‐phenyl‐5‐oxa‐1‐azaspiro[2.4]hept‐1‐e n‐2‐amine (6 ) and N‐(5‐oxa‐1‐azaspiro[2.4]hept‐1‐en‐2‐yl)‐(S)‐proline methyl ester ( 7 ) were synthesized from the corresponding heterocyclic thiocarboxamides 12 and 10 , respectively, by consecutive treatment with COCl2, 1,4‐diazabicyclo[2.2.2]octane, and NaN3 (Schemes 1 and 2). The reaction of these 2H‐azirin‐3‐amines with thiobenzoic and benzoic acid gave the racemic benzamides 13 and 14 , and the diastereoisomeric mixtures of the N‐benzoyl dipeptides 15 and 16 , respectively (Scheme 3). The latter were separated chromatographically. The configurations and solid‐state conformations of all six benzamides were determined by X‐ray crystallography. With the aim of examining the use of the new synthons in peptide synthesis, the reactions of 7 with Z‐Leu‐Aib‐OH to yield a tetrapeptide 17 (Scheme 4), and of 6 with Z‐Ala‐OH to give a dipeptide 18 (Scheme 5) were performed. The resulting diastereoisomers were separated by means of MPLC or HPLC. NMR Studies of the solvent dependence of the chemical shifts of the NH resonances indicate the presence of an intramolecular H‐bond in 17 . The dipeptides (S,R)‐ 18 and (S,S)‐ 18 were deprotected at the N‐terminus and were converted to the crystalline derivatives (S,R)‐ 19 and (S,S)‐ 19 , respectively, by reaction with 4‐bromobenzoyl chloride (Scheme 5). Selective hydrolysis of (S,R)‐ 18 and (S,S)‐ 18 gave the dipeptide acids (R,S)‐ 20 and (S,S)‐ 20 , respectively. Coupling of a diastereoisomeric mixture of 20 with H‐Phe‐OtBu led to the tripeptides 21 (Scheme 5). X‐Ray crystal‐structure determinations of (S,R)‐ 19 and (S,S)‐ 19 allowed the determination of the absolute configurations of all diastereoisomers isolated in this series.  相似文献   

3.
The reaction of (η5‐(N,N‐dimethylaminomethyl)cyclopentadien‐yl)(η4‐tetraphenylcyclobutadiene)cobalt with sodium tetrachloropalladate and (R)‐N‐acetylphenylalanine gave planar chiral palladacycle di‐μ‐chloridebis[(η5‐(Sp)‐2‐(N,N‐dimethylaminomethyl)cyclopentadienyl,1‐C,3′‐N)(η4‐tetraphenylcyclobutadiene)cobalt]dipalladium [(Sp)‐Me2‐CAP‐Cl] in 92 % ee and 64 % yield. Enantiopurity (>98 % ee) was achieved by purification of the monomeric (R)‐proline adducts and conversion back to the chloride dimer. Treatment with AgOAc gave (Sp)‐Me2‐CAP‐OAc which was applied to asymmetric transcyclopalladation (up to 78 % ee). The (R)‐N‐acetylphenylalanine mediated palladation methodology was applicable also to the corresponding N,N‐diethyl (82 % ee, 39 % yield) and pyrrolidinyl (>98 % ee, 43 % yield) cobalt sandwich complexes. A combination of 5 mol % of the latter [(Sp)‐Pyrr‐CAP‐Cl] and AgNO3 (3.8 equiv) is a catalyst for the allylic imidate rearrangement of an (E)‐N‐aryltrifluoroacetimidate (up to 83 % ee), and this catalyst system is also applicable to the rearrangement of a range of (E)‐trichloroacetimidates (up to 99 % ee). This asymmetric efficiency combined with the simplicity of catalyst synthesis provides accessible solutions to the generation of non‐racemic allylic amine derivatives.  相似文献   

4.
A highly enantioselective Pd‐catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α‐aryl‐β‐keto esters employing the (R,R)‐ANDEN‐phenyl Trost ligand has been developed. The product (S)‐α‐allyl‐α‐arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all‐carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)‐tanikolide.  相似文献   

5.
The endofungal metabolite epicoccamide D was synthesised in eighteen steps and 17 % yield as the first member of the family of natural glycotetramic acids. The modular character of the synthesis opens access also to analogues featuring different sugars and spacers. It comprises several high‐yielding key steps. The β‐D ‐mannosyl group was introduced by using an α‐D ‐glucosyl imidate donor with subsequent oxidative‐reductive epimerisation at C‐2′. The pyrrolidine ring was closed quantitatively by a Lacey‐Dieckmann condensation of an N‐(β‐ketoacyl)‐N‐methyl alaninate. The resulting 3‐[ω‐(β‐D ‐mannosyl)octadec‐2‐enoyl]tetramic acid was hydrogenated in the presence of the rhodium catalyst (R,R)‐[Rh(Et‐DUPHOS)][BF4] to establish the (7S)‐stereocentre. This was possible only after blocking the acyltetramic acid as a BF2‐chelate to prevent capture of the metal catalyst. We also assigned the hitherto unknown configuration of the natural product as being 5S,7S by comparison of its 13C NMR spectroscopic and optical rotation data with those of our two synthetic 5S,7R/S‐diasteromers.  相似文献   

6.
Asymmetric intramolecular direct hydroarylation of α‐ketoamides gives various types of optically active 3‐substituted 3‐hydroxy‐2‐oxindoles in high yields with complete regioselectivity and high enantioselectivities (84–98 % ee). This is realized by the use of the cationic iridium complex [Ir(cod)2](BArF4) and the chiral O‐linked bidentate phosphoramidite (R,R)‐Me‐BIPAM.  相似文献   

7.
Bicycle ring closure on a mixture of (4aS,8aR)‐ and (4aR,8aS)‐ethyl 2‐oxodecahydro‐1,6‐naphthyridine‐6‐carboxylate, followed by conversion of the separated cis and trans isomers to the corresponding thioamide derivatives, gave (4aSR,8aRS)‐ethyl 2‐sulfanylidenedecahydro‐1,6‐naphthyridine‐6‐carboxylate, C11H18N2O2S. Structural analysis of this thioamide revealed a structure with two crystallographically independent conformers per asymmetric unit (Z′ = 2). The reciprocal bicycle ring closure on (3aRS,7aRS)‐ethyl 2‐oxooctahydro‐1H‐pyrrolo[3,2‐c]pyridine‐5‐carboxylate, C10H16N2O3, was also accomplished in good overall yield. Here the five‐membered ring is disordered over two positions, so that both enantiomers are represented in the asymmetric unit. The compounds act as key intermediates towards the synthesis of potential new polycyclic medicinal chemical structures.  相似文献   

8.
N‐Substituted (3S,4S)‐ and (3R,4R)‐pyrrolidine‐3,4‐diols 9 and 10 , respectively, were derived from (+)‐L ‐ and (?)‐D ‐tartaric acid, respectively. Compounds 9k, 9l , and 9m with the N‐substituents, BnNH(CH2)2, 4‐PhC6H4CH2NH(CH2)2 and 4‐ClC6H4CH2NH(CH2)2, respectively, showed modest inhibitory activities toward α‐D ‐amyloglucosidases from Aspergillus niger and from Rhizopus mold (Table 1). Unexpectedly, several (3R,4R)‐pyrrolidine‐3,4‐diols 10 showed inhibitory activities toward α‐D ‐mannosidases from almonds and from jack bean (Table 3). N‐Substitution by the NH2(CH2)2 group, i.e., 10g , led to the highest potency.  相似文献   

9.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

10.
An efficient synthesis of (S)‐ or (R)‐3‐(benzyloxy‐methyl)‐cyclopent‐3‐enol was developed by appling an enzyme‐catalyzed kinetic‐resolution approach. This procedure allowed the syntheses of the enantiomeric building blocks (S)‐ and (R)‐cyclopentenol with high optical purity (>98 % ee). In contrast to previous approaches, the key advantage of this procedure is that the resolution is done on the level of enantiomers that only contain one stereogenic center. Owing to this feature, it was possible to chemically convert the enantiomers into each other. By using this route, the starting materials for the syntheses of carbocyclic D ‐ and L ‐nucleoside analogues were readily accessible. 3′,4′‐Unsaturated D ‐ or L ‐carbocyclic nucleosides were obtained from the condensation of various nucleobases with (S)‐ or (R)‐cyclopentenol. Functionalization of the double bond in 3′‐deoxy‐3′,4′‐didehydro‐carba‐D ‐thymidine led to a variety of new nucleoside analogues. By using the cycloSal approach, their corresponding phosphorylated metabolites were readily accessable. Moreover, a new synthetic route to carbocyclic 2′‐deoxy‐nucleosides was developed, thereby leading to D ‐ and L ‐carba‐dT. D ‐Carba‐dT was tested for antiviral activity against multidrug‐resistance HIV‐1 strain E2‐2 and compared to the known antiviral agent d4T, as well as L ‐carba‐dT. Whilst L ‐carba‐dT was found to be inactive, its D ‐analogue showed remarkably high activity against the resistant virus and significantly better than that of d4T. However, against the wild‐type virus strain NL4/3, d4T was found to be more‐active than D ‐carba‐dT.  相似文献   

11.
40 years ago spectroscopy, derivatization, and degradation revealed the structures of α‐lipomycin and its aglycon β‐lipomycin except for the configurations of their side‐chain stereocenters. We synthesized all relevant β‐lipomycin candidates: the (12R,13S) isomer has the same specific rotational value as the natural product. By the same criterion the (12R,13S)‐configured D ‐digitoxide is identical to α‐lipomycin. We double‐checked our assignments by degrading α‐ and β‐lipomycin to the diesters 33 and 34 and proving their 3D structures synthetically.  相似文献   

12.
Based on the asymmetric copper‐catalyzed 1,2‐addition of Grignard reagents to ketones, (R,R,R)‐γ‐tocopherol has been synthesized in 36 % yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73 % ee by the 1,2‐addition of a phytol‐derived Grignard reagent to an α‐bromo enone prepared from 2,3‐dimethylquinone.  相似文献   

13.
(5S,9S,17S)‐17‐Hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (II), and (5R,9R,17S)‐17‐hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (III), are equimolecular products of the FeII‐induced transposition of 10β‐hydro­peroxy‐17β‐hydroxyestr‐4‐en‐3‐one, (I). With respect to reagent mol­ecules, the configuration at C9 is retained for (II) while it is inverted in (III). The conformations of the five‐ and six‐membered rings are compared.  相似文献   

14.
In the context of developing ecofriendly chemistry, artificial enzymes are now considered as promising tools for synthesis. They are prepared in particular with the aim to catalyze reactions that are rarely, if ever, catalyzed by natural enzymes. We discovered that 1‐aminocyclopropane carboxylic acid oxidase reconstituted with CuII served as an efficient artificial Diels–Alderase. The kinetic parameters of the catalysis of the cycloaddition of cyclopentadiene and 2‐azachalcone were determined (KM=230 μm , kapp=3 h?1), which gave access to reaction conditions that provided quantitative yield and >99 % ee of the (1S,2R,3R,4R) product isomer. This unprecedented performance was rationalized by molecular modeling as only one docking pose of 2‐azachalcone was possible in the active site of the enzyme and this was the one that leads to the (1S,2R,3R,4R) product isomer.  相似文献   

15.
Homologation of readily available α‐boryl pyrrolidines with metal carbenoids is especially challenging even when good leaving groups (Cl) are employed. By performing a solvent switch from Et2O to CHCl3, efficient 1,2‐metalate rearrangement of the intermediate boronate occurs with both halide and ester leaving groups. The methodology was used in the total synthesis of the Stemona alkaloid (−)‐stemaphylline in just 11 steps (longest linear sequence), with high stereocontrol (>20:1 d.r.) and 11 % overall yield. The synthesis also features a late‐stage lithiation–borylation reaction with a tertiary amine containing carbenoid.  相似文献   

16.
An air‐stable, simple (RP)‐mentylbenzylphosphinate, readily available in large quantities, can efficiently induce the rhodium‐catalyzed asymmetric hydrogenation of α‐acetamidocinnamates with high enantioselectivity (up to 99.6 % ee). Intramolecular hydrogen bonding plays an important role in this asymmetric induction.  相似文献   

17.
A stereospecific synthesis of (2S)3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol from D ‐mannitol has been developed. The reaction of 2,3‐O‐isopropylidene‐D ‐glyceraldehyde with 2,4,5‐trifluorophenylmagnesium bromide gave [(4R)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl](2,4,5‐trifluorophenyl)methanol in 65% yield as a mixture of diastereoisomers (1 : 1). The Ph3P catalyzed reaction of the latter with C2Cl6 followed by reduction with Pd/C‐catalyzed hydrogenation gave (2S)‐3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol with >99% ee and 65% yield.  相似文献   

18.
Inexpensive acryloyl chloride was converted in 91% overall yield to two derivatives of β‐alanine, (R,R,R)‐ 6 and (R,R,S)‐ 6 , containing two chiral auxiliaries. C‐Alkylation of (R,R,R)‐ and (R,R,S)‐ 6 via a dianion derivative, was performed by direct metallation with 2.2 equiv. of lithium hexamethyldisilazane (LHMDS) in THF at ?78°. C‐Alkylation of (R,R,S)‐ 6 ‐Li2 (‘matched' pair of chiral auxiliaries) afforded the mono‐alkylated products 8 – 11 in 29–96% yield and 54–95% stereoselectivity. Employment of LiCl as an additive generally increased stereoselectivities, whereas the effect of HMPA as a cosolvent was erratic. Chemical correlation of the major diastereoisomer from the alkylation reactions with (S)‐α‐alkyl‐β‐alanine ( 12 – 15 ) showed that addition of the electrophile preferentially takes place on the enolate's Si‐face. This conclusion is also supported by molecular‐modeling studies (ab initio HF/3‐21G), which indicate that the lowest‐energy conformation for (R,R,S)‐ 6 ‐Li2 presents the more sterically hindered Re‐face of the enolate. The theoretical studies also predict a determining role for N? Li? O chelation in (R,R,S)‐ 6 ‐Li2, giving rise to an interesting ‘ion‐triplet' configuration for the dilithium dianion.  相似文献   

19.
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)‐ and (2R,4S)‐ or of (2R,4R)‐ and (2S,4R)‐2‐tert‐butyl‐4‐methyl‐3‐(4‐tolyl­sulfon­yl)‐1,3‐oxazolidine‐4‐carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)‐ or (R)‐2‐tert‐butyl‐5‐methyl‐4H‐1,3‐dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.  相似文献   

20.
A series of nine TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) 1a – 1i , have been tested as proton sources for the enantioselective protonation of the Li‐enolate of 2‐methyl‐1‐tetralone (=3,4‐dihydro‐2‐methylnaphthalen‐1(2H)‐one). The enolate was generated directly from the ketone (with LiN(i‐Pr)2 (LDA)/MeLi) or from the enol acetate (with 2 MeLi) or from the silyl enol ether (with MeLi) in CH2Cl2 or Et2O as the solvent (Scheme). The Li‐enolate (associated with LiBr/LDA, or LiBr alone) was combined with 1.5 – 3.0 equiv. of the TADDOL at −78° by addition of the latter or by inverse addition. 2‐Methyl‐1‐tetralone of (S)‐configuration is formed (≤80% yield) with up to 99.5% selectivity if and only if (R,R)‐TADDOLs ( 1d , e , g ) with naphthalen‐1‐yl groups on the diarylmethanol unit are employed (Table). The reactions were carried out on the 0.1‐ to 1.0‐mM scale. The selectivity is subject to non‐linear effects (NLE) when an enantiomerically enriched TADDOL 1d is used (Fig. 1). The performance of TADDOLs bearing naphthalen‐1‐yl groups is discussed in terms of their peculiar structures (Fig. 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号