首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition‐metal‐free hydroboration of various alkenes with pinacolborane (HBpin) initiated by tris[3,5‐bis(trifluoromethyl)phenyl]borane (BArF3) is reported. The choice of the boron Lewis acid is crucial as the more prominent boron Lewis acid tris(pentafluorophenyl)borane (B(C6F5)3) is reluctant to react. Unlike B(C6F5)3, BArF3 is found to engage in substituent redistribution with HBpin, resulting in the formation of ArFBpin and the electron‐deficient diboranes [H2BArF]2 and [(ArF)(H)B(μ‐H)2BArF2]. These in situ‐generated hydroboranes undergo regioselective hydroboration of styrene derivatives as well as aliphatic alkenes with cis diastereoselectivity. Another ligand metathesis of these adducts with HBpin subsequently affords the corresponding HBpin‐derived anti‐Markovnikov adducts. The reactive hydroboranes are regenerated in this step, thereby closing the catalytic cycle.  相似文献   

2.
Reaction of the zero‐valent platinum complex [Pt(PCy3)2] with SbF3 generates the cationic diplatinum stibenium complex [{(Cy3P)2Pt}2(μ‐SbF2)]+, the first unsupported metal‐only Lewis pair containing an antimony‐centered Lewis acid. In contrast, SbCl3 undergoes oxidative addition to [Pt(PCy3)2], resulting in the dihalostibanyl complex trans‐[PtCl(SbCl2)(PCy3)2], the first example of oxidative addition of an antimony–halide bond to a transition metal.  相似文献   

3.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

4.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

5.
The reaction mechanism of the elimination of CH3EH3 from the platinum complexes cis‐[Pt(CH3) · (EH3)(PH3)2] (E = Si, Ge) in the presence of acetylene has been studied using gradient‐corrected DFT calculations at the B3LYP level. The reaction proceeds in two steps. The first step is the formation of the acetylene complex [Pt(CH3)(HCCH)(EH3)(PH3)] which occurs in a associative/dissociate pathway via the five‐coordinated intermediate [Pt(CH3)(HCCH)(EH3)(PH3)2]. The rate‐determining step is the elimination of CH3EH3 via a four‐coordinated transition state. The alternative mechanism via direct dissociation from the five‐coordinated intermediates has higher activation barriers. The calculated activation energies of the model reactions are in good agreement with experimental results. The silyl complex has a lower barrier for the elimination reaction than the germyl complex. The calculated transition states show that the reason for the lower barrier is the strength of the nascending C–Si bond, which is higher than the C–Ge bond. The results are in agreement with the postulated mechanism of Ozawa et al. (Organometallics, 1998 , 17, 1018).  相似文献   

6.
Trans-methyl-azido-bis(triisopropylphosphine)platinum(II), [PtN3(CH3)(PiPr3)2] [PtN3(CH3)(PiPr3)2] has been prepared by reductive elimination of ethane from [Pt(CH3)3N3]4 in the presence of triisopropylphosphine at 80 °C. The complex is characterized by IR and NMR spectroscopy and by crystal structure determination, as well as by ab initio calculations. [PtN3(CH3)(PiPr3)2], which is in trans-configuration here, crystallizes in the monoclinic space group P21, Z = 2, and with the lattice dimensions a = 806.9(1), b = 1384.3(1), c = 1093.8(1) pm, β = 94.107(10)°.  相似文献   

7.
Perfluoronorbornadiene reacts with the compounds [M(PPh3)4] (M = Pt, Pd) and [IrCl(CO)(PMePh2)2] to give the adducts [(C7F8)M(PPh3)2] and [(C7F8)IrCl(CO)(PMePh2)2] in which one of the double bonds is coordinated to the metal atom. The platinum complex reacts further with [Pt(PPh3)4] to give [(C7F8){Pt(PPh3)2}2] having both double bonds coordinated to a Pt atom. The carbonylmetal anions [M?] react to form the mono-substitution products [(C7F7)M] (M = Mn(CO)5, Re(CO)5, Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2), but the use of an excess of [Fe(CO)2(η-C5H6)]? leads to substitution of one fluorine atom on each of the double bonds. The complex having M = Mn(CO)5 reacts with [Pt(PPh3)4] to afford the derivative [(C7F7){Mn(CO)4(PPh3)}{Pt(PPh3)2}], and the compound where M = Ir(CO)2(PPh3)2 undergoes an oxidative addition reaction with acetyl chloride. Oxidative coupling products have been isolated on UV irradiation of a mixture of perfluoronorbornadiene and [Fe(η4-CH2CRCHCH2)(CO)3] (R = H, Me), and under similar conditions the reaction with Fe(CO)5 affords [(C7F8)Fe(CO)4] in very low yield.  相似文献   

8.
Complex [PtMe2(PMe2Ar )] ( 1 ), which contains a tethered terphenyl phosphine (Ar =2,6‐(2,6‐i Pr2C6H3)2C6H3), reacts with [H(Et2O)2]BArF (BArF=B[3,5‐(CF3)2C6H3]4) to give the solvent (S) complex [PtMe(S)(PMe2Ar )]+ ( 2⋅S ). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2H4) to afford the corresponding adducts, treatment of 2⋅S with C2H2 yielded instead the allyl complex [Pt(η3‐C3H5)(PMe2Ar )]+ ( 6 ) via the alkyne intermediate [PtMe(η2‐C2H2)(PMe2Ar )]+ ( 5 ). Deuteration experiments with C2D2, and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a PtII‐promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt−Me bond.  相似文献   

9.
The mono-hydrido-bridged complexes (PEt3)2(Ar)Pt(μ2-H)Pt(Ar)(PEt3)2]-[BPh4] (Ar = Ph, 4-MeC6H4 and 2,4-Me2C6H3) have been obtained by treating trans-[Pt(Ar)(MeOH)(PEt3)2][BF4] with sodium formate and Na[BPH4]. The cations [PEt3)2(Ar)Pt(μ2-H)Pt(Arb')(PEt3)2]b+ (Ar = Ph and Arb' - 2,4-Me2C6H3 and 2,4,6-Me3C6H2 have bee identified in solution. Their b1H- and b31P-NMR data are reported. The X-ray crystal structure of [(PEt3)2(Ph)Pt(μ2-H)Pt(Ph)(PEt3)2][BPh4] is reported.  相似文献   

10.
Reaction of η2-enone and enal-platinum(0) complexes Pt(CH2CHCOR)(PPh3)2 (R=H, Me) with Lewis acidic compounds BX3 (X=F, C6F5) afforded adducts formed by coordination of boron to oxygen of the carbonyl group. The X-ray structure determination of the adduct formed from B(C6F5)3 and η2-methylvinylketone complex showed no strong interaction between Pt and carbonyl carbon. In contrast to the inability of the palladium(0) η2-enone complexes to form any Me3Al adduct, η2-cyclohexenoneplatinum(0) complex formed an isolable adduct with Me3Al, the structure of which was also confirmed by X-ray analysis. The NMR spectral parameters (Pt-C, Pt-P and P-P coupling constants) of these adducts were compared with those of the original η2-enone or enal-platinum(0) complexes as well as the ordinary η3-allylplatinum cation [Pt(PPh3)2(MeCHCHCH2)]+.  相似文献   

11.
The aromatic osmacyclopropenefuran bicycles [OsTp{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(PiPr3)]BF4 (Tp=hydridotris(1‐pyrazolyl)borate) and [OsH{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(CO)(PiPr3)2]BF4, with the metal fragment in a common vertex between the fused three‐ and five‐membered rings, have been prepared via the π‐allene intermediates [OsTp(η2‐CH2=CCHCO2Et)(OCMe2)(PiPr3)]BF4 and [OsH(η2‐CH2=CCHCO2Et)(CO)(OH2)(PiPr3)2]BF4, and their aromaticity analyzed by DFT calculations. The bicycle containing the [OsH(CO)(PiPr3)2]+ metal fragment is a key intermediate in the [OsH(CO)(OH2)2(PiPr3)2]BF4‐catalyzed regioselective anti‐Markovnikov hydration of ethyl buta‐2,3‐dienoate to ethyl 4‐hydroxycrotonate.  相似文献   

12.
The five-coordinate trigonal-bipyramidal palladium(II) and platinum(II) complexes with sulfur-coordinated glutathione at the axial position, [Pd(gluta)(pp3)](BF4) and [Pt(gluta)(pp3)](PF6) (gluta = glutathionate, pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), were prepared and characterized by 31P NMR spectroscopy. The dimeric square-planar platinum(II) complex [Pt(pp3)]2(PF6)4 gave the monomeric five-coordinate solvated complex, [Pt(pp3)(CH3CN)]2+, in acetonitrile. Extraction experiments for amino acids from the aqueous solution to the chloroform layer were carried out by using [Pd(pp3)(CH3CN)]2+, [Pt(pp3)(CH3CN)]2+, and [Pd(p3)(CH3CN)]2+ (p3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine) as extractants. High selectivity for the thiolate sulfur atom in l-cysteinate was observed at the solvated coordination site in [Pd(pp3)(CH3CN)]2+. The selectivity was applied to extraction of l-cysteinate from a mixture of some amino acids and, further, the reduced form of glutathionate from a mixture of the reduced and oxidized forms of glutathione.  相似文献   

13.
Attempts to prepare previously unknown simple and very Lewis acidic [RZn]+[Al(ORF)4]? salts from ZnR2, AlR3, and HO?RF delivered the ion‐like RZn(Al(ORF)4) (R=Me, Et; RF=C(CF3)3) with a coordinated counterion, but never the ionic compound. Increasing the steric bulk in RZn+ to R=CH2CMe3, CH2SiMe3, or Cp*, thus attempting to induce ionization, failed and led only to reaction mixtures including anion decomposition. However, ionization of the ion‐like EtZn(Al(ORF)4) compound with arenes yielded the [EtZn(arene)2]+[Al(ORF)4]? salts with arene=toluene, mesitylene, or o‐difluorobenzene (o‐DFB)/toluene. In contrast to the ion‐like EtZn(η3‐C6H6)(CHB11Cl11), which co‐crystallizes with one benzene molecule, the less coordinating nature of the [Al(ORF)4]? anion allowed the ionization and preparation of the purely organometallic [EtZn(arene)2]+ cation. These stable materials have further applications as, for example, initiators of isobutene polymerization. DFT calculations to compare the Lewis acidities of the zinc cations to those of a large number of organometallic cations were performed on the basis of fluoride ion affinity. The complexation energetics of EtZn+ with arenes and THF was assessed and related to the experiments.  相似文献   

14.
The oxidative addition of BF3 to a platinum(0) bis(phosphine) complex [Pt(PMe3)2] ( 1 ) was investigated by density functional calculations. Both the cis and trans pathways for the oxidative addition of BF3 to 1 are endergonic (ΔG°=26.8 and 35.7 kcal mol?1, respectively) and require large Gibbs activation energies (ΔG°=56.3 and 38.9 kcal mol?1, respectively). A second borane plays crucial roles in accelerating the activation; the trans oxidative addition of BF3 to 1 in the presence of a second BF3 molecule occurs with ΔG° and ΔG° values of 10.1 and ?4.7 kcal mol?1, respectively. ΔG° becomes very small and ΔG° becomes negative. A charge transfer (CT), F→BF3, occurs from the dissociating fluoride to the second non‐coordinated BF3. This CT interaction stabilizes both the transition state and the product. The B?F σ‐bond cleavage of BF2ArF (ArF=3,5‐bis(trifluoromethyl)phenyl) and the B?Cl σ‐bond cleavage of BCl3 by 1 are accelerated by the participation of the second borane. The calculations predict that trans oxidative addition of SiF4 to 1 easily occurs in the presence of a second SiF4 molecule via the formation of a hypervalent Si species.  相似文献   

15.
Protonolysis of the titanium alkyl complex [Ti(CH2SiMe3)(Xy-N3N)] (Xy-N3N=[{(3,5-Me2C6H3)NCH2CH2}3N]3−) supported by a triamidoamine ligand, with [NEt3H][B(3,5-Cl2C6H3)4] or [PhNMe2H][B(C6F5)4] afforded the cations [Ti(Xy-N3N)][A] (A=[B(3,5-Cl2C6H3)4] ( 1[B(ArCl)4] ; B(ArCl)4=tetrakis(3,5-dichlorophenyl)borate); A=[B(C6F5)4] ( 1[B(ArF)4] ; B(ArF)4=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). These Lewis acidic cations were reacted with coordinating solvents to afford the cations [Ti(L)(Xy-N3N)][B(C6F5)4] ( 2-L ; L=Et2O, pyridine and THF). XRD analysis revealed a trigonal monopyramidal (TMP) geometry for the tetracoordinate cations in 1[B(ArX)4] and trigonal bipyramidal (TBP) geometry for the pentacoordinate cations in 2-L . Variable-temperature NMR spectroscopy showed a dynamic equilibrium for 2-Et2O in solution, involving the dissociation of Et2O. Coordination to the titanium(IV) center activated the THF molecule, which, in the presence of NEt3, underwent ring-opening to give the titanium alkoxide [Ti(O(CH2)4NEt3)(Xy-N3N)][B(3,5-Cl2C6H3)4] ( 3 ). Hydride abstraction from Cβ,eq of the triamidoamine ligand arm in [Ti(CH2SiMe3)(Xy-N3N)] or [Ti(NMe2)(Xy-N3N)] with [Ph3C][B(3,5-Cl2C6H3)4] led to the diamidoamine–imine complex [Ti(R){(Xy-N=CHCH2)(Xy-NCH2CH2)2N}][B(3,5-Cl2C6H3)4] (R=CH2SiMe3 ( 4 a ); R=NMe2 ( 4 b )). Hydride addition to 4 b with [Li(THF)][HBPh3] gave [Ti(NMe2)(Xy-N3N)], whereas KH deprotonated further to give [Ti(NMe2){(Xy-NCH=CH)(Xy-NCH2CH2)2N}] ( 5 ). XRD on single crystals of 3 and 4 b confirmed the proposed structures.  相似文献   

16.
Treatment of trans-Pt(COCOPh)(Cl)(PPh3)2 (1a) with AgBF4in THF led to the formation of a metastatic complex trans-[Pt(COCOPh)(THF)(PPh3)2](BF4) (2) which readily underwent ligand substitution to give a cationic aqua complex trans-[Pt(COCOPh)(OH2)(PPh3)2](BF4) (5a). Complex 5a has been characterized spectroscopically and crystallographically. Analogous reaction of trans-Pt(COCOOMe)(Cl)(PPh3)2 (1b) with Ag(CF3SO3) in dried CH2C12 was found first to yield a methoxyoxalyl triflato complextrans-Pt(COCOOMe)(OTf)(PPh3)2 (6). Attempts to crystallize the triflato product in CH2-cl2hexane under ambient conditions also afforded an aqua complex of the triflate salt f/wu-[Pt(COCOOMe)(OH2)(PPhj)2](CF3SO3) (5b). Complex 5a in a noncoordinating solvent such as CH2C12 or CHCl3 suffered spontaneous decarbonylation to form first cis-[Pt(COPh)(CO)(PPh3)2l(BF4) (3a) then the thermodynamically stable isomer trans-[Pt(COPh)(CO)(PPh3)2](BF4) (3b). Crystallization of complex 3b under ambient conditions resulted in an aqua benzoyl complex trans-[Pt(COPh)(OH2)(PPh3)2](BF4) (7). The replacement of the H2O ligand in complex 7 by CO was done simply by bubbling CO into the solution of 7. The single crystal structures of 5b and 7 have been determined by X-ray diffraction. The distances of the Pt-O bonds in 5a, 5b, and 7 support that the aqua ligand is a weak donor in such cationic aquaorganoplatinum(lI) complexes, in agreement with their lability to the substitution reactions.  相似文献   

17.
The compounds [Pt(C2H4)2(PR3)] [PR3 = P-tBu2Me, P(C6H11)3, PPh3] react dimethyldivinylsilane or dimethyldivinyltin to give chelate complexes [Pt{(CH2CH)2MMe2} (PR3)] (M = Si or Sn). allyltrimethyltin reacts with various diethylene (tertiary phosphine)platinum compounds with cleavage of the allyl group to afford complexes [Pt(SnMe3)(η3-C3H5)(PR2)]. The NMR spectra (13C, 1H and 31P) of the new compounds have been recorded, and the data are discussed in terms of the structures proposed.  相似文献   

18.
A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2. X-ray diffraction studies provided structural snapshots of the sequence of reactions involved in the process. At low temperature, we observed the initial formation of the unprecedented σ-BH complexes [Pt(HBR2)(ItBuiPr′)(ItBuiPr)][BArF], one of which has been isolated. From −15 to +10 °C, the σ-BH species undergo a carbon–boron coupling process leading to the platinum hydride derivative [Pt(H)(ItBuiPr–BR2)(ItBuiPr)][BArF], 4. Surprisingly, these compounds are thermally unstable undergoing carbon–boron bond cleavage at room temperature that results in the 14-electron Pt(ii) boryl species [Pt(BR2)(ItBuiPr)2][BArF], 2. This unusual reaction process has been corroborated by computational methods, which indicate that the carbon–boron coupling products 4 are formed under kinetic control whereas the platinum boryl species 2, arising from competitive C–H bond coupling, are thermodynamically more stable. These findings provide valuable information about the factors governing productive carbon–boron coupling reactions at transition metal centers.

A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2.  相似文献   

19.
The Donor Properties of Bis(pyrazolyl)‐Sulfur Derivatives From the reactions of bis(pyrazolyl)sulfane S(pz)2 ( 1 ) with the fluoro Lewis acids BF3 and AsF5 in liquid SO2 the 1:2‐adducts S(pz·BF3)2 ( 2 ) and S(pz·AsF5)2 ( 3 ) are obtained. 1 reacts with [Co(SO2)4(FAsF5)2] to give the doubly bridged FAsF4F dimeric complex [Co{S(pz)2}(FAsF5)(SO2)(μ‐FAsF4F)]2 ( 5 ). From F2S(pz)2 and [Ni(SO2)6](AsF6)2, the fluorocubane [Ni4F4{S(pz)2}4(μ‐FAsF4F)2](AsF6)2·4SO2 ( 8 ) is isolated. The X‐ray structures of the compounds 2 , 3 , 5 and 8 are reported.  相似文献   

20.
We report a range of new transformations of the diamide–amine supported Ti?NNPh2 functional group with a variety of unsaturated substrates, along with DFT studies of the key mechanisms. Reaction of [Ti(N2Npy)(NNPh2)(py)] ( 4 , N2Npy=(2‐NC5H4)CMe(CH2NSiMe3)2; py=pyridine) with MeCN gave the dimeric species [Ti2(N2Npy)2{μ‐NC(Me)(NNPh2)}2] through a [2+2] cycloaddition process. Reaction of 4 or [Ti(N2NMe)(NNPh2)(py)] ( 5 , N2NMe=MeN(CH2CH2NSiMe3)2) with fluorinated benzonitriles gave the terminal hydrazonamide complexes [Ti(N2NR){NC(Ar)NNPh2}(py)] (R=py or Me; Ar=2,6‐C6H3F2 or C6F5). DFT studies showed that this proceeds through an overall [2+2] cycloaddition–reverse cycloaddition, resulting in net insertion of ArCN into the Ti?Nα bonds of the respective hydrazides. Reaction of 4 with a mixture of MeCN and PhCCMe gave the metallacycle [Ti(N2Npy){NC(Me)C(Ph)C(Me)NNPh2}] by sequential coupling of Ti?NNPh2 with PhCCMe and then MeCN. A related product, [Ti(N2Npy){NC(Me)C(ArF)C(H)NNPh2}], was formed by insertion of MeCN into the Ti? C bond of the isolated azatitanacyclobutene [Ti(N2Npy){N(NPh2)C(H)C(ArF)}] (ArF=3‐C6H4F). Reaction of 4 with two equivalents of B(Ar)3 (Ar=C6F5) formed the zwitterionic borate [Ti(N2Npy){η2‐N(NPh2)B(Ar)3}] by electrophilic attack at Nα. Compounds 4 and 5 reacted with tBuNC and/or XylNC (Xyl=2,6‐C6H3Me2) to give the Nα? Nβ bond cleavage products, [Ti(N2NR)(NCNR′)(NPh2)] (R=py or Me; R′=tBu or Xyl), containing metallated carbodiimide ligands. DFT studies of these reactions found an initial addition of RNC across Ti?Nα followed by Nβ coordination, and finally complete Nα transfer from the NNPh2 to the RNC fragment. Reaction of 5 with Ar′NCE (E=O, S, Se; Ar′=2,6‐C6H3iPr2) gave the [2+2] cycloaddition products [Ti(N2NMe){N(NPh2)C(NAr′)O}(py)] and [Ti(N2NMe){N(NPh2)C(NAr′)E}] (E=S or Se), which did not undergo further transformation of the Ti? N? NPh2 moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号