首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A versatile one‐pot strategy was used to synthesize two large, purely inorganic selenotungstates, nanocluster K6Na16[Ce6Se6W67O230(OH)6(H2O)17]?47 H2O ( 1 ) and layer K9Na5Ce(H2O)4[Ce6Se10W51O187(OH)7(H2O)18]?45 H2O ( 2 ), by combining cerium centers and SeO32? heteroanion templates. Compound 1 displays a Ce‐stabilized hexameric nanocluster with one rhombus‐like {W4O15(OH)3} unit in the center, whereas compound 2 is the first example of a Ce‐bridged layer selenotungstate network based on linkage of the unusual {Ce6Se10W51O187(OH)7(H2O)18} clusters and additional Ce(H2O)4 fragments via Ce‐O‐Se bridges. The compounds were characterized by elemental analyses, IR spectroscopy, thermogravimetric analyses, powder and single‐crystal X‐ray diffraction, and electrospray ionization mass spectrometry. Moreover, the electrochemical property of compound 1 was also investigated.  相似文献   

2.
A new CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)2] ( 1 ), bearing a dianionic pentadentate ligand with an N3O2 donor set, has been prepared by treating (NH4)2Ce(NO3)6 with the sodium salt of ligand L1 . Complex 1 in the presence of TEMPO and 4 Å molecular sieves (MS4 A) has been found to serve as a catalyst for the oxidation of arylmethanols using dioxygen as an oxidant. We propose an oxidation mechanism based on the isolation and reactivity study of a trivalent cerium complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)(THF)] ( 2 ), its side‐on μ‐O2 adduct [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐η22‐O2) ( 3 ), and the hydroxo‐bridged CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐OH)2 ( 4 ) as key intermediates during the catalytic cycle. Complex 2 was synthesized by reduction of 1 with 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐diazacyclohexadiene. Bubbling O2 into a solution of 2 resulted in formation of the peroxo complex 3 . This provides the first direct evidence for cerium‐catalyzed oxidation of alcohols under an O2 atmosphere.  相似文献   

3.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

4.
Syntheses, crystal structures and thermal behavior of two new hydrated cerium(III) sulfates are reported, Ce2(SO4)3·4H2O ( I ) and β‐Ce2(SO4)3·8H2O ( II ), both forming three‐dimensional networks. Compound I crystallizes in the space group P21/n. There are two non‐equivalent cerium atoms in the structure of I , one nine‐ and one ten‐fold coordinated to oxygen atoms. The cerium polyhedra are edge sharing, forming helically propagating chains, held together by sulfate groups. The structure is compact, all the sulfate groups are edge‐sharing with cerium polyhedra and one third of the oxygen atoms, belonging to sulfate groups, are in the S–Oμ3–Ce2 bonding mode. Compound II constitutes a new structure type among the octahydrated rare‐earth sulfates which belongs to the space group Pn. Each cerium atom is in contact with nine oxygen atoms, these belong to four water molecules, three corner sharing and one edge sharing sulfate groups. The crystal structure is built up by layers of [Ce(H2O)4(SO4)]nn+ held together by doubly edge sharing sulfate groups. The dehydration of II is a three step process, forming Ce2(SO4)3·5H2O, Ce2(SO4)3·4H2O and Ce2(SO4)3, respectively. During the oxidative decomposition of the anhydrous form, Ce2(SO4)3, into the final product CeO2, small amount of CeO(SO4) as an intermediate species was detected.  相似文献   

5.
Five mixed‐metal mixed‐valence Mo/V polyoxoanions, templated by the pyramidal SeO32? heteroanion have been isolated: K10[MoVI12VV10O58(SeO3)8]?18 H2O ( 1 ), K7[MoVI11VV5VIV2O52(SeO3)]?31 H2O ( 2 ), (NH4)7K3[MoVI11VV5VIV2O52(SeO3)(MoV6VV‐ O22)]?40 H2O ( 3 ), (NH4)19K3[MoVI20VV12VIV4O99(SeO3)10]?36 H2O ( 4 ) and [Na3(H2O)5{Mo18?xVxO52(SeO3)} {Mo9?yVyO24(SeO3)4}] ( 5 ). All five compounds were characterised by single‐crystal X‐ray structure analysis, TGA, UV/Vis and FT‐IR spectroscopy, redox titrations, and elemental and flame atomic absorption spectroscopy (FAAS) analysis. X‐ray studies revealed two novel coordination modes for the selenite anion in compounds 1 and 4 showing η,μ and μ,μ coordination motifs. Compounds 1 and 2 were characterised in solution by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed characteristic patterns showing distribution envelopes corresponding to 2? and 3? anionic charge states. Also, the isolation of these compounds shows that it may be possible to direct the self‐assembly process of the mixed‐metal systems by controlling the interplay between the cation “shrink‐wrapping” effect, the non‐conventional geometry of the selenite anion and fine adjustment of the experimental variables. Also a detailed IR spectroscopic analysis unveiled a simple way to identify the type of coordination mode of the selenite anions present in POM‐based architectures.  相似文献   

6.
Several cerium(III) complexes with lacunary polyoxotungstates -B-XW9O9– 33 (X=AsIII, SbIII) and W5O6– 18, have been synthesized and characterized by single-crystal X-ray analysis, elemental analysis and IR spectroscopy. The X-ray analysis of Na25[Ce(H2O)5As4W40O140]63H2O (1) reveals the framework of the well-known [As4W40O140]28– anion with a {Ce(H2O)5}3+ unit in the central site S1. The anion in (NH4)19[(SbW9O33)4{WO2(H2O)}2Ce3(H2O)8(Sb4O4)]48H2O (2) consists of a tetrahedral assembly of four -B-SbIIIW9O9– 33 units connected by two additional six-coordinate tungsten atoms, three nine-coordinate monocapped square-antiprismatic cerium atoms and a Sb4O4 cluster. The CeIII center in the [Ce(W5O18)2]9– anion in Na9[Ce(W5O18)]NaCl30H2O (3) displays the square-antiprismatic environment observed in all complexes of the type [Ln(W5O18)2] n.  相似文献   

7.
New Heteropolyanions of the M2X2W20 Structure Type with Antimony(III) as a Heteroatom The syntheses of two new heteropolyanions of the M2X2W20 structure type are presented. They are characterized by X‐ray structure analysis and vibrational spectra. Na6(NH4)4[Zn2(H2O)6(WO2)2(SbW9O33)2]·36H2O (1) is monoclinic (P21/n) with a = 12.873(3)Å, b = 25.303(4)Å, c = 15.975(4)Å and β = 91.99(3)°. Na10[Mn2(H2O)6(WO2)2(SbW9O33)2]·40H2O (2) also crystallizes in the space group P21/n with a = 12.892(3)Å, b = 25.219(5)Å, c = 16.166(3)Å and β = 94.41(3)°. Both polyanions are isostructural to anions of this structure type containing other heteroatoms. They are built up by two β‐B‐SbW9 fragments, which are derived from defect structures of the Keggin anion. These subÍunits are connected by two formal WO2 groups with further stabilization by addition of two M(H2O)3 groups (M = ZnII, MnII, FeIII, CoII) leading to the M2X2W20‐type heteropolytungstates.  相似文献   

8.
In the title compound, [V4O8(SeO3)2(C10H8N2)4], there are two distinct vanadium coordination environments. Alternating corner‐shared VO4N2 octahedra and SeO3 pyramids result in eight‐membered centrosymmetric V2Se2O4 rings. In addition, pairs of V centres form centrosymmetric V2O6N4 clusters via edge‐sharing. These two kinds of secondary building units are linked in an ABABAB fashion to give an infinite chain whose nature is unprecedented in Se–V–O systems.  相似文献   

9.
Rational self‐assembly of Sb2O3 and Na2WO4, or (NH4)18[NaSb9W21O86] with transition‐metal ions (Mn2+, Cu2+, Co2+), in aqueous solution under controlled conditions yield a series of sandwich type complexes, namely, Na2H2[Mn2.5W1.5(H2O)8(B‐β‐SbW9O33)2]?32 H2O (1) , Na4H7[Na3(H2O)6Mn3(μ‐OAc)2(B‐α‐SbW9O33)2]?20 H2O (OAc=acetate anion) (2) , NaH8[Na2Cu4Cl(B‐α‐SbW9O33)2]?21 H2O (3) , Na8K[Na2K(H2O)2{Co(H2O)}3(B‐α‐SbW9O33)2]? 10 H2O (4) , and Na5H[{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]?11.5 H2O (5) . These structures are determined by using the X‐ray diffraction technique and further characterized by obtaining IR spectra and performing elemental analysis. Structure analysis reveals that polyoxoanions in 1 and 5 comprise of two [B‐β‐SbW9O33]9? building units, whereas 2 , 3 , and 4 consist of two isomerous [B‐α‐SbW9O33]9? building blocks, which are all linked by different transition‐metal ions (Mn2+, Cu2+, or Co2+) with different quantitative nuclearity. It should be noted that compound 2 represents the first one‐dimensional sinusoidal chain based on sandwich like tungstoantimonate building blocks through the carboxylate‐bridging ligands. Additionally, 3 is constructed from sandwiched anions [Na2Cu4Cl(B‐α‐SbW9O33)2]9? linked to each other to form an infinitely extended 2D network, whereas 5 shows an interesting 3D framework built up from offset sandwich type polyoxoanion [{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]6? linked by Co2+ and Na+ ions. EPR studies performed at 110 K and room temperature reveal that the metal cations (Mn2+, Cu2+, Co2+) reside in a square‐pyramidal geometry in 2 , 3 , and 4 . The magnetic behavior of 1 – 4 suggests the presence of weak antiferromagnetic coupling interactions between magnetic metal centers with the exchange integral J=?0.552 cm?1 in 2 .  相似文献   

10.
Two new thorium tungstates A6Th6(WO4)14O (A=K and Rb) were synthesized by high‐temperature solid‐state reactions. The structures of both phases are based on a rare dinuclear confacial bi‐octahedral [W2O9]6? core, encapsulated in a [Th6W7O46(W2O9)]32? cage showing a cross‐section geometry similar to a six‐leafed lily. The adjacent cages are connected in two dimensional layers by WO4 tetrahedral linkers. Due to the dissimilarities in mutual orientations of adjacent layers in these two structures, K6Th6(WO4)14O crystallizes in space group of R32 while Rb6Th6(WO4)14O stabilizes in P$\bar 6$ 2c. The high‐temperature phase transition was observed in Rb6Th6(WO4)14O and investigated using high‐temperature PXRD technique. The results demonstrate a very unusual thermal behavior of this compound. The Raman and IR spectra of both phases were analyzed with respect to their complex structures.  相似文献   

11.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

12.
A family of penta‐rare‐earth incorporated tetravacant Dawson selenotungstates [H2N(CH3)2]10H3[SeO4RE5(H2O)7(Se2W14O52)2] ? 40H2O [RE=Ho3+ ( 1 ), Er3+ ( 2 ), Tm3+ ( 3 ), Tb3+ ( 4 )] were synthesized. It should be noted that a penta‐RE [SeO4RE5(H2O)7]11+ central core connecting two tetra‐vacant Dawson‐type [Se2W14O52]12? subunits generates a dimeric assembly of [SeO4RE5 (H2O)7(Se2W14O52)2]13? in the structures of 1 – 4 . Meanwhile, a class of Ho3+/Tm3+ co‐doped derivatives based on 1 with a Ho3+/Tm3+ molar ratio of 0.75:0.25–0.25:0.75 were also prepared and characterized by energy‐dispersive spectroscopy (EDS) analyses. Moreover, their luminescence properties were systematically investigated, which indicate that Tm3+ ions can sensitize the emission of Ho3+ ions in the visible region and prolong the fluorescence lifetime of Ho3+ ions to some extent. Energy transfer from Tm3+ ions to Ho3+ ions was probed by time‐resolved emission spectroscopy (TRES), and the CIE 1931 diagram has been applied to evaluate all possible luminescence colors.  相似文献   

13.
In the title compound, C5H4N2O4·H2O, the 3,5‐pyrazoledicarboxylic acid (H3pdc) molecules are joined into one‐dimensional chains by O—H?O and N—H?O hydrogen bonds, with distances of 2.671 (2) and 2.776 (2) Å, respectively. The one‐dimensional chains form a three‐dimensional structure via O—H?OW and OW—HW?N hydrogen bonds, with distances of 2.597 (3) and 2.780 (3) Å, respectively. In addition to the potential for forming open‐channel frameworks, access to the six coordination atoms of H3pdc can be directly controlled by varying the pH of the reaction environment, allowing further control over the design and synthesis of novel coordination polymers using various metal centers.  相似文献   

14.
Reactions of cerium(III) nitrate, Ce(NO3)3?6 H2O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4‐methoxybenzoic acid, in the presence of a tridentate N,N,N‐donor ligand, diethylenetriamine (L1), under aerobic conditions yielded the corresponding cerium hexamers Ce6O8(O2CtBu)8(L1)4 ( 1 ), Ce6O8(O2CC6H5)8(L1)4 ( 2 ), and Ce6O8(O2CC6H4‐4‐OCH3)8(L1)4 ( 3 ). Hexamers 1 , 2 , and 3 contain the same octahedral CeIV6O8 core, in which all interstitial oxygen atoms are connected by μ3‐oxo bridging ligands. In contrast, treatment of the CeIV precursor (NH4)2Ce(NO3)6 (CAN) with pivalic acid and the ligand L1 under the same conditions afforded Ce6O4(OH)4(O2CtBu)12(L1)2 ( 4 ), exhibiting a deformed octahedral CeIV6O4(OH)4 core containing μ3‐oxo and μ3‐hydroxo moieties in defined positions. In contrast to the formation of 1 – 3 , the use of N‐methyldiethanolamine (L) in the reaction with Ce(NO3)3?6 H2O and pivalic acid afforded a previously reported CeIII dinuclear cluster, Ce2(O2CtBu)6L2, even in the presence of dioxygen. ESI‐MS analysis of the reaction mixture clearly indicated the importance of the ligand L1 in promoting oxidation of the CeIII aggregates, [Cen(O2CtBu)3n(L1)2], which is necessary for the formation of CeIV hexamers.  相似文献   

15.
Reactions of CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] with Mn‐containing starting materials result in seven novel polynuclear Ce or Ce/Mn complexes with pivalato (tBuCO ) and, in most cases, auxiliary N,O‐ or N,O,O‐donor ligands. With nuclearities ranging from 6–14, the compounds present aesthetically pleasing structures. Complexes [CeIV6(μ3‐O)4(μ3‐OH)4(μ‐O2CtBu)12] ( 1 ), [CeIV6MnIII4(μ4‐O)4(μ3‐O)4(O2CtBu)12(ea)4(OAc)4]?4 H2O?4 MeCN (ea?=2‐aminoethanolato; 2 ), [CeIV6MnIII8(μ4‐O)4(μ3‐O)8(pye)4(O2CtBu)18]2[CeIV6(μ3‐O)4(μ3‐OH)4(O2CtBu)10(NO3)4] [CeIII(NO3)5(H2O)]?21 MeCN (pye?=pyridine‐2‐ethanolato; 3 ), and [CeIV6CeIII2MnIII2(μ4‐O)4(μ3‐O)4(tbdea)2(O2CtBu)12(NO3)2(OAc)2]?4 CH2Cl2 (tbdea2?=2,2′‐(tert‐butylimino]bis[ethanolato]; 4 ) all contain structures based on an octahedral {CeIV6(μ3‐O)8} core, in which many of the O‐atoms are either protonated to give (μ3‐OH)? hydroxo ligands or coordinate to further metal centers (MnIII or CeIII) to give interstitial (μ4‐O)2? oxo bridges. The decanuclear complex [CeIV8CeIIIMnIII(μ4‐O)3(μ3‐O)3(μ3‐OH)2(μ‐OH)(bdea)4(O2CtBu)9.5(NO3)3.5(OAc)2]?1.5 MeCN (bdea2?=2,2′‐(butylimino]bis[ethanolato]; 5 ) contains a rather compact CeIV7 core with the CeIII and MnIII centers well‐separated from each other on the periphery. The aggregate in [CeIV4MnIV2(μ3‐O)4(bdea)2(O2CtBu)10(NO3)2]?4 MeCN ( 6 ) is based on a quasi‐planar {MnIV2CeIV4(μ3‐O)4} core made up of four edge‐sharing {MnIVCeIV2(μ3‐O)} or {CeIV3(μ3‐O)} triangles. The structure of [CeIV3MnIV4MnIII(μ4‐O)2(μ3‐O)7(O2CtBu)12(NO3)(furan)]?6 H2O ( 7 ?6 H2O) can be considered as {MnIV2CeIV2O4} and distorted {MnIV2MnIIICeIVO4} cubane units linked through a central (μ4‐O) bridge. The Ce6Mn8 equals the highest nuclearity yet reported for a heterometallic Ce/Mn aggregate. In contrast to most of the previously reported heterometallic Ce/Mn systems, which contain only CeIV and either MnIV or MnIII, some of the aggregates presented here show mixed valency, either MnIV/MnIII (see 7 ) or CeIV/CeIII (see 4 and 5 ). Interestingly, some of the compounds, including the heterovalent CeIV/CeIII 4 , could be obtained from either CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] as starting material.  相似文献   

16.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

17.
A family of three sandwich‐type, phenylantimony(III)‐containing tungstoarsenates(III), [(PhSbIII){Na(H2O)}AsIII2W19O67(H2O)]11? ( 1 ), [(PhSbIII)2AsIII2W19O67(H2O)]10? ( 2 ), and [(PhSbIII)3(B‐α‐AsIIIW9O33)2]12? ( 3 ), have been synthesized by one‐pot procedures and isolated as hydrated alkali metal salts, Cs3K3.5Na4.5[(PhSbIII){Na(H2O)}AsIII2W19O67(H2O)]?41H2O ( CsKNa ‐ 1 ), Cs4.5K5.5[(PhSbIII)2AsIII2W19O67(H2O)]?35H2O ( CsK‐2 ), and Cs4.5Na7.5[(PhSbIII)3(B‐α‐AsIIIW9O33)2]?42H2O ( CsNa ‐ 3 ). The number of incorporated {PhSbIII} units could be selectively tuned from one to three by careful control of the reaction parameters. The three compounds were characterized in the solid state by single‐crystal XRD, IR spectroscopy, and thermogravimetric analysis. The aqueous solution stability of sandwich polyanions 1 – 3 was also studied by multinuclear (1H, 13C, 183W) NMR spectroscopy. Effective inhibitory activity against six different kinds of bacteria was identified for all three polyanions, for which the activity increased with the number of incorporated {PhSbIII} groups.  相似文献   

18.
[Ho5(H2O)16(OH)2As6W64O220]25?, a Large Novel Polyoxoanion from Trivacant Keggin Fragments The novel polyoxotungstate Na7K18[Ho5(H2O)16(OH)2As6W64O220] · 56 H2O ( 1 ) was synthesized in aqueous solution and characterized by X‐ray structure analysis, elemental analysis and IR spectroscopy. The anion in 1 represents one of the largest polyoxoanions known yet and exhibits an unusual arrangement of six Keggin units. It consists of six trivacant lacunary α‐B‐(AsW9O33)9? Keggin fragments which are connected by a bridging [Ho5W10(H2O)16(OH)2O22]29+ unit. The five HoIII atoms are coordinated by eight oxygen atoms, forming a square‐antiprism.  相似文献   

19.
《化学:亚洲杂志》2018,13(19):2897-2907
In the presence of the larger [H2N(CH3)2]+ and K+ counter cations as structure‐stabilizing agents, a class of unprecedented selenium and lanthanide (Ln) simultaneously bridging tetra‐vacant Dawson‐like selenotungstate aggregates [H2N(CH3)2]2Na9K2H19{[Ln4W4 Se4O22(H2O)5](Se2W14O52)2}2 ⋅ 60 H2O [Ln=TbIII ( 1 ), DyIII ( 2 ), HoIII ( 3 ), ErIII ( 4 ), TmIII ( 5 ), YbIII ( 6 )] have been obtained by the one‐pot assembly reaction of Na2WO4 ⋅ 2 H2O, Ln(NO3)3 ⋅ 6 H2O, and Na2SeO3 under moderately acidic aqueous conditions and the complexes were structurally characterized by elemental analyses, IR spectra, single‐crystal X‐ray diffraction, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. It should be noted that the appropriate molar ratio of Se/W is extremely important in the formation of 1 – 6 and can effectively ameliorate the yield of 1 – 6 . Moreover, dimethylamine hydrochloride is also indispensable and plays a considerably important role in improving the solubility of Ln ions and stabilizing the structures of 1 – 6 . The main polyoxoanion skeletons of 1 – 6 are constructed from two sandwich‐type tetra‐vacant Dawson‐like {[Ln4W4Se4O22(H2O)5](Se2W14O52)2}16− half‐units linked through two W‐O‐Ln bridges. The sandwich‐type half‐unit comprises two tetra‐vacant Dawson‐like [Se2W14O52]12− fragments encapsulating a unique dodecanuclear Se‐Ln‐W [Ln4W4Se4O22(H2O)5]8+ oxo cluster. Their solid‐state visible and NIR fluorescent properties and lifetime decay behaviors were measured and their solid‐state luminescent spectra mainly demonstrate the characteristic emission bands of Ln3+ ions. Moreover, the dominant wavelengths, the color purity, and correlated color temperatures of 1 – 5 have been also calculated. In addition, the luminous flux values of 1 – 5 are 2031, 6992, 3071, 921, and 477 lumen, respectively.  相似文献   

20.
Seven new mixed oxochalcogenate compounds in the systems MII/XVI/TeIV/O/(H), (MII = Ca, Cd, Sr; XVI = S, Se) were obtained under hydrothermal conditions (210 °C, one week). Crystal structure determinations based on single‐crystal X‐ray diffraction data revealed the compositions Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), Cd4(SO4)(TeO3)3, Cd5(SO4)2(TeO3)2(OH)2, and Sr3(H2O)2(SeO4)(TeO3)2 for these phases. Peculiar features of the crystal structures of Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), and Sr3(H2O)2(SeO4)(TeO3)2 are metal‐oxotellurate(IV) layers connected by bridging XO4 tetrahedra and/or by hydrogen‐bonding interactions involving hydroxyl or water groups, whereas Cd4(SO4)(TeO3)3 and Cd5(SO4)2(TeO3)2(OH)2 crystallize as framework structures. Common to all crystal structures is the stereoactivity of the TeIV electron lone pair for each oxotellurate(IV) unit, pointing either into the inter‐layer space, or into channels and cavities in the crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号