首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhomboidal and spherical metallic‐copper nanostructures were encapsulated within well‐formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion‐exchange. These metallic‐copper nanostructures could be separated from the inorganic support and remained stable for months. The choice of the clay support influenced both the shape and the size of the synthesized Cu nanostructures. The synthesized materials and the supported catalysts from which they were produced were studied in detail by TEM and SEM, powder X‐ray diffraction, thermal analysis, as well as by Raman and X‐ray photoelectron spectroscopy.  相似文献   

2.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Much of the research effort concerning the nanoscopic properties of clays has focused on its mechanical applications, for example, as nanofillers for polymer reinforcement. To broaden the horizon of what is possible by exploiting the richness of clays in nanoscience, herein we report a bottom‐up approach for the production of hybrid materials in which clays act as the structure‐directing interface and reaction media. This new method, which combines self‐assembly with the Langmuir–Schaefer technique, uses the clay nanosheets as a template for the grafting of C60 into a bi‐dimensional array, and allows for perfect layer‐by‐layer growth with control at the molecular level. In contrast to the more‐common growth of C60 arrays through nanopatterning, our approach can be performed under atmospheric conditions, can be upscaled to areas of tenths of cm2, and can be applied to almost any hydrophobic substrate. Herein, we report a detailed study of this approach by using temperature‐dependent X‐ray diffraction, spectroscopic measurements, and STM.  相似文献   

4.
Polybenzoxazine (PBZ), which has a structure similar to that of phenolic resin, is formed through the thermal self‐curing of benzoxazine, that is through a heterocyclic ring opening reaction that requires no catalyst and releases no condensation byproducts. We have used the solvent blending method to prepare PBZ/clay nanocomposites possessing various clay contents. We synthesized a monofunctional benzoxazine monomer (MBM) and then treated the clay with this intercalation agent. The results of X‐ray diffraction (XRD) analysis indicated that MBM intercalated into the galleries of the clay; the nanocomposite possessed an exfoliated structure at 3% clay content. To better understand the curing kinetics of the PBZ/clay nanocomposites, we performed dynamic and isothermal differential scanning calorimetry (DSC) measurements. We describe the thermodynamics of the curing process, using all three of the Kissinger, Ozawa, and Kamal models. The Kissinger and Ozawa methods gave fairly close results for the calculated activation energies, which decreased upon increasing the clay content. The Kamal method, based on an autocatalytic model, suggested a total reaction order of between 2.4 and 2.8. The glass transition temperature (Tg) decreased upon increasing the clay content. Thermogravimetric analysis (TGA) indicated that the nanocomposites have higher decomposition temperatures than does the pristine PBZ; this finding suggests an enhancement in their thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 347–358, 2006  相似文献   

5.
Seven 1,4‐phenylenebisphosphonates of monovalent ions, A(HO3PC6H4PO3H2) (A = Li, K, Rb, Cs, Tl, Ag and NH4), were synthesized and characterized by single‐crystal X‐ray diffraction, spectroscopic and thermal methods. These compounds and the reported sodium analogue have four structure types. The sodium compound, one‐dimensional lithium compound and pillared‐layered cesium compounds have different structure types, whereas the potassium, rubidium, thallium, ammonium and silver compounds have a pillared ladder‐like structure. They undergo initial thermal decomposition in the range of 120–270 °C. Moreover, the single crystal X‐ray structure of 1,4‐phenylenebisphosphonic acid was determined.  相似文献   

6.
《Electroanalysis》2006,18(22):2243-2250
This work is focused on the voltammetric examination of the ion exchange properties of a smectite type clay, before and after its modification by the replacement of its native interlamellar cations (Na+, K+, Ca2+) by hexadecyltrimethylammonium cations (HDTMA+). The raw clay and its organically modified form were first characterized by X‐ray diffraction (XRD) and N2 adsorption–desorption isotherms (BET method) that confirmed the modification via an intercalation process. These materials were subsequently coated onto glassy carbon surfaces, and the resulting modified electrodes were evaluated for the uptake of [Ru(NH3)6]3+ and [Fe(CN)6]3? ions used as redox probes. Some experimental parameters affecting the incorporation of the probes within the film, including the ionic strength, the surfactant loading and the solution pH are thoroughly examined, in order to highlight the mechanism of the process. The possibility of using the surfactant‐intercalated clay modified electrode as an electrochemical sensor for [Fe(CN)6]3? is also evaluated.  相似文献   

7.
Calcium biuretooxophosphate Ca[PO2(NH)3(CO)2]2 was synthesized by ion exchange reaction in aqueous solution. The crystal structure of the salt was elucidated by single‐crystal X‐ray diffraction. Anionic 1‐phospha‐2, 4, 6‐s‐triazine rings exhibiting a half‐chair conformation act as monodentate ligands for the calcium ions. A 3D network is formed by the resulting CaO6 octahedrons together with the anionic rings interconnected by hydrogen bonds. Beside the crystal structure, FTIR and photoluminescence spectra of calcium biuretooxophosphate are discussed. The thermal behavior of the salt is examined by means of temperature‐dependent powder X‐ray diffraction measurements and combined TG and DTA analyses.  相似文献   

8.
Summary: Non‐ionic pyrrole was directly intercalated into unmodified montmorillonite (MMT) and organically modified MMT galleries by adsorption, and subsequently polymerized within the interlamellar spaces by a mechanochemical route under solvent‐free conditions. XRD analysis revealed the successful intercalation of pyrrole into unmodified MMT and organically modified MMT clay galleries by mechanochemical grinding. After in situ polymerization, the XRD and FT‐IR analyses confirmed the insertion of polypyrrole chains between both MMT galleries.

X‐ray powder diffraction patterns of (A) pyrrole‐intercalated MMT and (B) pyrrole‐intercalated C18‐MMT.  相似文献   


9.
A three‐dimensional (3D) nitrogen‐doped reduced graphene oxide (rGO)–carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one‐step electrodeposition of the stable colloidal GO–CNTs solution containing Na2PdCl4 affords rGO@CNTs‐supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen‐doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0 nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.  相似文献   

10.
Platinum has been introduced into pillared clay as a complex with the organosilicon amine N’-[3-(trimethoxysilyl)propyl]diethyltriamine, as a complex with the organosilicon amine and zirconyl chloride, as an ammine complex, and by impregnation with a chloroplatinic acid solution followed by hydrogen reduction. The catalytic activity of the Pt-containing clays in CO oxidation in excess hydrogen was also studied. The last procedure yields the most active Pt-containing pillared clay. Calcium has been introduced into pillared clay by ion exchange, and it was found that the catalytic activity of the clay decreases with increasing Ca content.  相似文献   

11.
A nonionic surfactant, triethylene glycol mono-n-decyl ether (C(10)E(3)), characterized by its lamellar phase state, was introduced in the interlayer of a Na-montmorillonite clay at several concentrations. The synthesized organoclays were characterized by small-angle X-ray scattering in conjunction with Fourier transform infrared spectroscopy and adsorption isotherms. Experiments showed that a bilayer of C(10)E(3) was intercalated into the interlayer space of the naturally exchanged Na-montmorillonite, resulting in the aggregation of the lyotropic liquid crystal state in the lamellar phase. This behavior strongly differs from previous observations of confinement of nonionic surfactants in clays where the expansion of the interlayer space was limited to two monolayers parallel to the silicate surface and cationic surfactants in clays where the intercalation of organic compounds is introduced into the clay galleries through ion exchange. The confinement of a bilayer of C(10)E(3) nonionic surfactant in clays offers new perspectives for the realization of hybrid nanomaterials, since the synthesized organoclays preserve the electrostatic characteristics of the clays, thus allowing further ion exchange while presenting at the same time a hydrophobic surface and a maximum opening of the interlayer space for the adsorption of neutral organic molecules of important size with functional properties.  相似文献   

12.
We synthesized organosoluble, thermoplastic elastomer/clay nanocomposites by making a jelly like solution of ethylene vinyl acetate containing 28% vinyl acetate (EVA‐28) and blending it with organomodified montmorillonite. Sodium montmorillonite (Na+‐MMT) was made organophilic by the intercalation of dodecyl ammonium ions. X‐ray diffraction patterns of Na+‐MMT and its corresponding organomodified dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) showed an increase in the interlayer spacing from 11.94 to 15.78 Å. However, X‐ray diffraction patterns of the thermoplastic elastomer and its hybrids with organomodified clay contents up to 6 wt % exhibited the disappearance of basal reflection peaks within an angle range of 3–10°, supporting the formation of a delaminated configuration. A hybrid containing 8 wt % 12Me‐MMT revealed a small hump within an angle range of 5–6° because of the aggregation of silicate layers in the EVA‐28 matrix. A transmission electron microscopy image of the same hybrid showed 3–5‐nm 12Me‐MMT particles dispersed in the thermoplastic elastomer matrix; that is, it led to the formation of nanocomposites or molecular‐level composites with a delaminated configuration. The formation of nanocomposites was reflected through the unexpected improvement of thermal and mechanical properties; for example, the tensile strength of a nanocomposite containing only 4 wt % organophilic clay was doubled in comparison with that of pure EVA‐28, and the thermal stability of the same nanocomposite was higher by about 34 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2065–2072, 2002  相似文献   

13.
The spectroscopic behavior of ionic Eu3+ or Tb3+ complexes of an aromatic carboxyl‐functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X‐ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy‐transfer efficiency from the ligand to Eu3+ ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu3+ complex shows bright red emission from the prominent 5D07F2 transition of Eu3+ ions, and that containing the Tb3+ complex exhibits bright green emission due to the dominant 5D47F5 transition of Tb3+ ions.  相似文献   

14.
Two pillared‐layer metal–organic frameworks (MOFs; PMOF‐55 and NH2‐PMOF‐55) based on 1,2,4‐triazole and terephthalic acid (bdc)/NH2‐bdc ligands were assembled and display framework stabilities, to a certain degree, in both acid/alkaline solutions and toward water. They exhibit high CO2 uptakes and selective CO2/N2 adsorption capacities, with CO2/N2 selectivity in the range of 24–27, as calculated by the ideal adsorbed solution theory method. More remarkably, the site and interactions between the host network and the CO2 molecules were investigated by single‐crystal X‐ray diffraction, which showed that the main interaction between the CO2 molecules and PMOF‐55 is due to multipoint supramolecular interactions of C?H???O, C???O, and O???O. Amino functional groups were shown to enhance the CO2 adsorption and identified as strong adsorption sites for CO2 by X‐ray crystallography.  相似文献   

15.
Three fulleropyrrolidine derivatives, characterized by the presence of positive charges, were introduced in the interlayer space of montmorillonite. The composites were characterized by powder X-ray diffraction and differential thermal and thermogravimetric (DTA-TGA) analysis, in conjunction with FTIR, UV-Vis, Raman, and (57)Fe-M?ssbauer spectroscopies. Organophilic derivatives were intercalated into organically modified clays, while water-soluble fulleropyrrolidines were introduced into the clay galleries through ion exchange. The experiments, complemented by computer simulations, show that not all the clay-clay platelets are intercalated by the fullerene derivatives and that a sizable amount of charge transfer takes place between the host and the guests.  相似文献   

16.
Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen‐bond‐based self‐assembly. The dynamic character of the linkers and the preference of the peptides towards self‐assembly into β‐barrel‐type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å3 and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self‐sorting and chiral self‐assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70, is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70, and the X‐ray structures provide unique information on the modes of peptide–fullerene interactions.  相似文献   

17.
A modular approach has been followed for the synthesis of a series of fullerene–ionic‐liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL?1 in several cases. In addition, one of the C60–IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano‐onions and nanocages with few‐layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDAX), and high‐resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki–Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.  相似文献   

18.
Bis(cyclopentadienyl)‐zirconium dichloride (Cp2ZrCl2) and (1,4‐bis(2,6‐diisopropylphenyl)‐acenaphthenediimine) dichloronickel (Ni‐diimine) were supported on montmorillonite (MMT) pretreated with triisobutylaluminum and 10‐undecence‐1‐ol to produce in situ polyethylene–clay nanocomposites in a gas‐phase reactor. The development of the nanocomposite morphology was investigated with transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) analysis. During polymerization, the MMT layers were partially exfoliated by the growing polymer chains, starting from the openings of the clay galleries, but intercalation and exfoliation occurred only to a certain extent. The thermal properties of the nanocomposites we also analyzed by differential scanning calorimetry (DSC).

  相似文献   


19.
The Langmuir–Blodgett (L–B) technique has been employed for the construction of hybrid films consisting of three components: surfactant, clay, and lysozyme (Lys). The surfactants are octadecylammonium chloride (ODAH) and octadecyl ester of rhodamine B (RhB18). The clays include saponite and laponite. Surface pressure versus area isotherms indicate that lysozyme is adsorbed by the surfactant–clay L–B film at the air–water interface without phase transition. The UV‐visible spectra of the hybrid film ODAH–saponite–Lys show that the amount of immobilized lysozyme in the hybrid film is (1.3±0.2) ng mm?2. The average surface area (Ω) per molecule of lysozyme is approximately 18.2 nm2 in the saponite layer. For the multilayer film (ODAH–saponite–Lys)n, the average amount of lysozyme per layer is (1.0±0.1) ng mm?2. The amount of lysozyme found in the hybrid films of ODAH–laponite–Lys is at the detection limit of about 0.4 ng mm?2. Attenuated total reflectance (ATR) FTIR spectra give evidence for clay layers, ODAH, lysozyme, and water in the hybrid film. The octadecylammonium cations are partially oxidized to the corresponding carbamate. A weak 1620 cm?1 band of lysozyme in the hybrid films is reminiscent of the presence of lysozyme aggregates. AFM reveals evidence of randomly oriented saponite layers of various sizes and shapes. Individual lysozyme molecules are not resolved, but aggregates of about 20 nm in diameter are clearly seen. Some aggregates are in contact with the clay mineral layers, others are not. These aggregates are aligned in films deposited at a surface pressure of 20 mN m?1.  相似文献   

20.
Novel isomorphous pillared‐layer‐type crystalline lanthanide 1,3,5‐benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP‐bpy and LnBP‐dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X‐ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP‐dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号