首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The important biochemical probe molecule brefeldin A ( 1 ) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.  相似文献   

2.
A concise and largely catalysis‐based approach to the potent algal toxin polycavernoside A ( 1 ) is described that intercepts a late‐stage intermediate of a previous total synthesis; from there on, this challenging target can be reached in a small number of steps. Key to success was a sequence of a molybdenum‐catalyzed ring‐closing alkyne metathesis (RCAM) reaction to forge the macrocyclic frame, followed by a gold‐catalyzed and strictly regioselective transannular hydroalkoxylation of the resulting cycloalkyne that allows the intricate oxygenation pattern of the macrolactone ring of 1 to be properly set. The required cyclization precursor 5 was assembled by the arguably most advanced fragment coupling process based on an Evans–Tishchenko redox esterification known to date, which was optimized to the extent that the precious coupling partners could be used in an almost equimolar ratio ( 6 / 7 1:1.3). The preparation of these building blocks features, inter alia, the power of the Sc(OTf)3‐catalyzed Leighton crotylation as well as the superb selectivities of alkene cross metathesis, asymmetric keto‐ester hydrogenation, and the Jacobsen epoxidation/epoxide resolution technologies.  相似文献   

3.
An expeditious route to the potential immunosuppressive lead compound ivorenolide B ( 1 ) is described, which relies on the formation of the distinctive 1,3‐diyne subunit embedded into the 17‐membered framework of this target by ring‐closing alkyne metathesis (RCAM). This key transformation was accomplished with the aid of the molybdenum alkylidyne complex 7 , which turned out to be compatible with the acid sensitive propargylic alcohol substituents as well as the terminal alkyne unit present in the cyclization precursor. As the presence of such functionality had been detrimental for alkyne metathesis until very recently, this example illustrates the excellent application profile of this new catalyst as well as the rapidly increasing scope of the transformation. Its structural outreach can be further increased by subjecting cyclo‐1,3‐diynes to appropriate post‐metathetic transformations, most notably with the help of alkynophilic gold or palladium catalysts. This aspect is illustrated by the conversion of the model compound 4 into various cyclophane products.  相似文献   

4.
Total synthesis allowed the constitution of the cytotoxic marine macrolides of the formosalide family to be confirmed and their previously unknown stereostructure to be assigned with confidence. The underlying blueprint was inherently modular to ensure that each conceivable isomer could be reached. This flexibility derived from the use of strictly catalyst controlled transformations to set the stereocenters, except for the anomeric position, which is under thermodynamic control; as an extra safety measure, all stereogenic centers were set prior to ring closure to preclude any interference of the conformation adopted by the macrolactone rings of the different diastereomers. Late‐stage macrocyclization by ring‐closing alkyne metathesis was followed by a platinum‐catalyzed transannular 6‐exo‐dig hydroalkoxylation/ketalization to craft the polycyclic frame. The side chain featuring a very labile unsaturation pattern was finally attached to the core by Stille coupling.  相似文献   

5.
An efficient entry into the phosphorylated marine macrolide enigmazole A is described. Enigmazole A interferes with c‐Kit signaling by an as yet unknown mode of action and is therefore a potential lead in the quest for novel anticancer agents. Key to success is a gold‐catalyzed cascade comprising a [3,3]‐sigmatropic rearrangement of a propargyl acetate along the periphery of a macrocyclic scaffold, followed by a transannular hydroalkoxylation of the resulting transient allenyl acetate. This transformation mandated the use of a chiral gold catalyst to ensure a matching double‐asymmetric setting. Other noteworthy steps are the preparation of the oxazole building block by a palladium‐catalyzed C?H activation, as well as the smooth ring‐closing alkyne metathesis of a diyne substrate bearing a propargylic leaving group, which has only little precedent.  相似文献   

6.
A sequence comprising a ring‐closing alkyne metathesis of a propargyl alcohol derivative, followed by a ruthenium‐catalyzed redox isomerization of the derived cycloalkyne and a transannular aza‐Michael addition allowed the formation of the distinguishing piperidine‐metacyclophane framework of the Lythraceum alkaloid lythanidine in a few high‐yielding steps. This application attests to the excellent functional‐group tolerance of a molybdenum alkylidyne complex endowed with triphenylsilanolate ligands, which enabled the macrocyclization even in the presence of protic functionalities, and thus illustrates the power of contemporary catalytic acetylene chemistry for target‐oriented synthesis.  相似文献   

7.
Lanthanide‐catalyzed alkynyl exchange through C?C single‐bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β‐alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo‐ and cross‐dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions.  相似文献   

8.
A formal synthesis of the antimicrobial tricyclic macrolides, tubelactomicins A and E, featured by a transannular Diels-Alder (TADA) approach, has been explored. The key issue for the transannular cyclization was the synthesis of a 24-membered macrolactone equipped with all the requisite functionalities, which has been achieved using an intramolecular Hiyama cross-coupling strategy. The Hiyama coupling reaction spontaneously triggered off the TADA reaction. From the endo-TADA adduct, formal syntheses of tubelactomicins A and E were achieved. The 24-membered macrolactone formation was also achieved via an intramolecular ring-closing metathesis approach.  相似文献   

9.
A binary catalytic system, RuCl2(N‐heterocyclic carbene)(p‐cymene)/alkyne, was developed for improved molecular weight control in ring‐opening metathesis polymerization (ROMP) reactions of norbornene derivatives in organic and aqueous media. Monometallic ruthenium arene compounds were activated using aryl and aliphatic terminal alkynes to form highly active metathesis species. The effects of alkyne structure and concentration on the overall catalytic activity were systematically investigated. The catalytic activity of the metathesis active species can be tuned by varying alkyne substituents. Also, the initiation rate of the ROMP reaction can be tuned by increasing the alkyne‐to‐Ru ratio. ROMP polymers with a wide range of molecular weights (91–832 kDa) were isolated in organic media, whereas polymers with a molecular weight range of 110–280 kDa with average particle sizes of 150–250 nm were isolated in aqueous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The marine natural products amphidinolide C ( 1 ) and F ( 4 ) differ in their side chains but share a common macrolide core with a signature 1,4‐diketone substructure. This particular motif inspired a synthesis plan predicating a late‐stage formation of this non‐consonant (“umpoled”) pattern by a platinum‐catalyzed transannular hydroalkoxylation of a cycloalkyne precursor. This key intermediate was assembled from three building blocks ( 29 , 41 and 47 (or 65 )) by Yamaguchi esterification, Stille cross‐coupling and a macrocyclization by ring‐closing alkyne metathesis (RCAM). This approach illustrates the exquisite alkynophilicity of the catalysts chosen for the RCAM and alkyne hydroalkoxylation steps, which activate triple bonds with remarkable ease but left up to five other π‐systems in the respective substrates intact. Interestingly, the inverse chemoselectivity pattern was exploited for the preparation of the tetrahydrofuran building blocks 47 and 65 carrying the different side chains of the two target macrolides. These fragments derive from a common aldehyde precursor 46 formed by an exquisitely alkene‐selective cobalt‐catalyzed oxidative cyclization of the diunsaturated alcohol 44 , which left an adjacent acetylene group untouched. The northern sector 29 was prepared by a two‐directional Marshall propargylation strategy, whereas the highly adorned acid subunit 41 derives from D ‐glutamic acid by an intramolecular oxa‐Michael addition and a proline‐mediated hydroxyacetone aldol reaction as the key steps; the necessary Me3Sn‐group on the terminus of 41 for use in the Stille coupling was installed via enol triflate 39 , which was obtained by selective deprotonation/triflation of the ketone site of the precursor 38 without competing enolization of the ester also present in this particular substrate.  相似文献   

11.
The first enantioselective total synthesis of (−)‐deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum‐catalyzed enantioselective ring‐closing metathesis reaction for the desymmetrization of an advanced intermediate that introduces the C5‐quaternary stereocenter. After C21‐oxygenation, the pentacyclic core was accessed by electrophilic C19‐amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6‐etherification reaction proved highly effective to secure the F‐ring and the fourth contiguous stereocenter of (−)‐deoxoapodine with complete stereochemical control.  相似文献   

12.
Lactones are known to react with the reagent generated in situ from CCl4 and PPh3 in a Wittig‐type fashion to give gem‐dichloro‐olefin derivatives. Such compounds are now shown to undergo reductive alkylation on treatment with organolithium reagents RLi to furnish acetylene derivatives bearing the substituent R at their termini (R=Me, n‐, sec‐, tert‐alkyl, silyl); the reaction can be catalyzed with either Cu(acac)2 or Fe(acac)3/1,2‐diaminobenzene. Two alkynol derivatives prepared in this way from readily accessible lactone precursors served as the key building blocks for the total syntheses of the cytotoxic marine macrolides tulearin A ( 1 ) and C ( 2 ). The assembly of these fragile targets hinged upon ring closing alkyne metathesis (RCAM) followed by a formal trans‐reduction of the resulting cycloalkynes via trans‐hydrosilylation/protodesilylation.  相似文献   

13.
An iridium‐catalyzed azide–alkyne cycloaddition reaction (IrAAC) of electron‐rich internal alkynes is described. It is the first efficient intermolecular AAC of internal thioalkynes. The reaction exhibits remarkable features, such as high efficiency and regioselectivity, mild reaction conditions, easy operation, and excellent compatibility with air and a broad spectrum of organic and aqueous solvents. It complements the well‐known CuAAC and RuAAC click reactions.  相似文献   

14.
The Friedel–Crafts reaction of electron‐rich phenols with isatins was developed by employing bifunctional thiourea–tertiary amine organocatalysts. Cinchona alkaloid derived thiourea epiCDT‐ 3 a efficiently catalyzed the Friedel–Crafts‐type addition of phenols to isatin derivatives to provide 3‐aryl‐3‐hydroxy‐2‐oxindoles 7 and 9 in good yield (80–95 %) with good enantiomeric excess (83–94 %). Friedel–Crafts adduct 7 t was subjected to a copper(I)‐catalyzed azide–alkyne cycloaddition to obtain biologically important 3‐aryl‐3‐hydroxy‐2‐oxindole 11 in good enantiomeric excess and having a 1,2,3‐triazole moiety.  相似文献   

15.
An unprecedented alkyne–nitrile metathesis takes place when the high‐valent iron‐nitrido dication [Fe(L)N]2+, with L=2,6‐bis(2‐methyl‐1,3‐diaminopropan‐2‐yl)pyridine, is reacted with alkynes in the gas phase under thermal conditions. While the detailed role of the alkyne substrate with respect to relative rates, regioselectivities, and branching ratios remains to be elucidated, the very existence of this novel metathesis reaction provides additional experimental evidence of a genuine, long‐lived, formal iron(V)‐nitrido dication.  相似文献   

16.
An efficient method for the synthesis of tertiary amines through a gold(I)‐catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %), a variety of secondary amines bearing electron‐deficient and electron‐rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron‐deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one‐pot reaction from simple and readily available starting materials without the need of isolation of air/moisture‐sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI‐MS, isotope labeling studies, and DFT calculations on this gold(I)‐catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)–alkyne intermediate is more likely than a gold(I)–amine intermediate, a three‐coordinate gold(I) intermediate, or a dinuclear gold(I)–alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)‐coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments.  相似文献   

17.
Well‐defined star polymers consisting of tri‐, tetra‐, or octa‐arms have been prepared via coupling‐onto strategy using photoinduced copper(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. An azide end‐functionalized polystyrene and poly(methyl methacrylate), and an alkyne end‐functionalized poly(ε‐caprolactone) as the integrating arms of the star polymers are prepared by the combination of controlled polymerization and nucleophilic substitution reactions; whereas, multifunctional cores containing either azide or alkyne functionalities were synthesized in quantitatively via etherification and ring‐opening reactions. By using photoinduced copper‐catalyzed azide–alkyne cycloaddition (CuAAC) click reaction, reactive linear polymers are simply attached onto multifunctional cores to form corresponding star polymers via coupling‐onto methodology. The chromatographic, spectroscopic, and thermal analyses have clearly demonstrated that successful star formations can be obtained via photoinduced CuAAC click reaction. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1687–1695  相似文献   

18.
The reaction of an aryne with an alkyne to generate a benzocyclobutadiene (BCB) intermediate is rare. We report here examples of this reaction, revealed by Diels–Alder trapping of the BCB by either pendant or external electron‐deficient alkynes. Mechanistic delineation of the reaction course is supported by DFT calculations. A three‐component process joining the benzyne first with an electron‐rich and then with an electron‐poor alkyne was uncovered. Reactions in which the BCB functions in a rarely observed role as a 4π diene component in Diels–Alder reactions are reported. The results also shed new light on aspects of the hexadehydro‐Diels–Alder reaction used to generate the benzynes.  相似文献   

19.
Rhodium(III)‐ and cobalt(III)‐catalyzed C−H activation of indoles and coupling with 1,6‐enynes is discussed. Under rhodium(III) catalysis, the alkyne insertion follows 2,1‐regioselectivity with a subsequent type‐I intramolecular Diels–Alder reaction (IMDA) to afford [6,5]‐fused cycles. When catalyzed by the cobalt(III) congener, 1,2‐insertion of the alkyne is preferred, and followed by a rare type‐II IMDA, thus leading to bridged [3,3,1]‐cycles. This selectivity of the alkyne insertion was mainly tuned by the steric sensitivity of the catalyst.  相似文献   

20.
Tricyclic isotaxane and taxane derivatives have been synthesized by a very efficient cascade ring‐closing dienyne metathesis (RCDEYM) reaction, which formed the A and B rings in one operation. When the alkyne is present at C13 (with no neighboring gem‐dimethyl group), the RCEDYM reaction leads to 14,15‐isotaxanes 16 a , b and 18 b with the gem‐dimethyl group on the A ring. If the alkyne is at the C11 position (and thus flanked by a gem‐dimethyl group), RCEDYM reaction only proceeds in the presence of a trisubstituted olefin at C13, which disfavors the competing diene ring‐closing metathesis reaction, to give the tricyclic core of Taxol 44 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号