首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inspired by the active‐site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [PtBu2NtBu2)Fe(CN)2CO] by using an experimentally ready‐made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate‐determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol?1 in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low‐cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe?Hδ????Hδ+?N dihydrogen bond in a fashion of frustrated Lewis pairs.  相似文献   

3.
4.
5.
6.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

7.
[NiFe] hydrogenase catalyzes the reversible cleavage of H2. The electrons produced by the H2 cleavage pass through three Fe–S clusters in [NiFe] hydrogenase to its redox partner. It has been reported that the Ni‐SIa, Ni‐C, and Ni‐R states of [NiFe] hydrogenase are involved in the catalytic cycle, although the mechanism and regulation of the transition between the Ni‐C and Ni‐SIa states remain unrevealed. In this study, the FT‐IR spectra under light irradiation at 138–198 K show that the Ni‐L state of [NiFe] hydrogenase is an intermediate between the transition of the Ni‐C and Ni‐SIa states. The transition of the Ni‐C state to the Ni‐SIa state occurred when the proximal [Fe4S4]p2+/+ cluster was oxidized, but not when it was reduced. These results show that the catalytic cycle of [NiFe] hydrogenase is controlled by the redox state of its [Fe4S4]p2+/+ cluster, which may function as a gate for the electron flow from the NiFe active site to the redox partner.  相似文献   

8.
9.
10.
11.
12.
The redox activity of cysteine sulfur allows numerous post‐translational protein modifications involved in the oxidative regulation of metabolism, in metal binding, and in signal transduction. A combined approach based on infrared multiple photon dissociation spectroscopy at the Centre Laser Infrarouge d'Orsay (CLIO) free electron laser facility, calculations of IR frequencies, and finite temperature ab initio molecular dynamics simulations has been employed to characterize the gas‐phase structures of deprotonated cysteine sulfenic, sulfinic, and sulfonic acids, [cysSOx]? (x=1, 2, 3, representing the number of S‐bound oxygen atoms), which are key intermediates in the redox‐switching chemistry of proteins. The ions show different structural motifs owing to preferential binding of the proton to either the carboxylate or sulfur‐containing group. Due to the decreasing basicity of the sulfenic, sulfinic, and sulfonic terminals, the proton bound to SO? in [cysSO]? migrates to the carboxylate in [cysSO3]?, whereas it turns out to be shared in [cysSO2]?. Evidence is gathered that a mixture of close‐lying low‐energy conformers is sampled for each cysteine oxo form in a Paul ion trap at room temperature.  相似文献   

13.
14.
An anti trihydroxycarbenium ion is revealed to be the gas‐phase structure of protonated carbonic acid by IR multiple‐photon dissociation spectroscopy (see picture for calculated structure and comparison of experimental and computed spectra). Deprotonation yields anti‐H2CO3 with a nominal gas‐phase basicity of 724 kJ mol?1.

  相似文献   


15.
16.
Complexes of PheAla and AlaPhe with alkali metal ions Na+ and K+ are generated by electrospray ionization, isolated in the Fourier‐transform ion cyclotron resonance (FT–ICR) ion trapping mass spectrometer, and investigated by infrared multiple‐photon dissociation (IRMPD) using light from the FELIX free electron laser over the mid‐infrared range from 500 to 1900 cm?1. Insight into structural features of the complexes is gained by comparing the obtained spectra with predicted spectra and relative free energies obtained from DFT calculations for candidate conformers. Combining spectroscopic and energetic results establishes that the metal ion is always chelated by the amide carbonyl oxygen, whilst the C‐terminal hydroxyl does not complex the metal ion and is in the endo conformation. It is also likely that the aromatic ring of Phe always chelates the metal ion in a cation‐π binding configuration. Along with the amide CO and ring chelation sites, a third Lewis‐basic group almost certainly chelates the metal ion, giving a threefold chelation geometry. This third site may be either the C‐terminal carbonyl oxygen, or the N‐terminal amino nitrogen. From the spectroscopic and computational evidence, a slight preference is given to the carbonyl group, in an ROaOt chelation pattern, but coordination by the amino group is almost equally likely (particularly for K+PheAla) in an ROaNt chelation pattern, and either of these conformations, or a mixture of them, would be consistent with the present evidence. (R represents the π ring site, Oa the amide oxygen, Ot the terminal carbonyl oxygen, and Nt the terminal nitrogen.) The spectroscopic findings are in better agreement with the MPW1PW91 DFT functional calculations of the thermochemistry compared with the B3LYP functional, which seems to underestimate the importance of the cation–π interaction.  相似文献   

17.
A detailed characterization of a close synthetic model of the [2 Fe]H subcluster in the [FeFe] hydrogenase active site is presented. It contains the full primary coordination sphere of the CO‐inhibited oxidized state of the enzyme including the CN? ligands and the azadithiolate (adt) bridge, [((μ‐S? CH2)2NR)Fe2(CO)4(CN)2]2?, R=CH2CH2SCH3. The electronic structure of the model complex in its FeIFeII state was investigated by means of density functional theory (DFT) calculations and Fourier transform infrared (FTIR) spectroscopy. By using a combination of continuous‐wave (CW) electron paramagnetic resonance (EPR) and hyperfine sublevel correlation (HYSCORE) experiments as well as DFT calculations, it is shown that, for this complex, the spin density is delocalized over both iron atoms. Interestingly, we found that the nitrogen hyperfine coupling, which represents the interaction between the unpaired electron and the nitrogen at the dithiolate bridge, is slightly larger than that in the analogous complex in which the CN? ligands are replaced with PMe3 ligands. This reveals, first, that the CN?/PMe3 ligands coordinated to the iron core are electronically coupled to the amine in the adt bridge. Second, the CN? ligands in this complex are somewhat stronger σ‐donor ligands than the PMe3 ligand, and thereby enable more spin density to be transferred from the Fe core to the adt unit, which might in turn affect the reactivity of the bridging amine.  相似文献   

18.
Combined molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the crystal structure of the reduced membrane‐bound [NiFe] hydrogenase (MBH) from Ralstonia eutropha to determine the absolute configuration of the CO and the two CN? ligands bound to the active‐site iron of the enzyme. For three models that include the CO ligand at different positions, often indistinguishable on the basis of the crystallographic data, we optimized the structures and calculated the ligand stretching frequencies. Comparison with the experimental IR data reveals that the CO ligand is in trans position to the substrate‐binding site of the bimetallic [NiFe] cluster.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号