首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Substituents can induce dramatic changes in the photoluminescence properties of N,O‐chelated boron complexes. Specifically, the boron complexes of 2‐(benzothiazol‐2‐yl)phenols become bright deep blue‐ and orange‐red‐emitting materials depending on amino substituents at the 5‐ and 4‐positions of 2‐(benzothiazol‐2‐yl)phenol, respectively. Absorption and emission data show that the resulting boron complexes have little or small overlap between the absorption and emission spectra and, furthermore, X‐ray crystal structures for both the blue and orange‐red complexes indicate the absence of π–π stacking interaction in the crystal‐packing structures. These features endow the boron complexes with bright and strong photoluminescence in the solid state, which distinguishes itself from the typical boron complexes of dipyrromethenes (BODIPYs). A preliminary study indicates that the blue complexes have promising electro‐optical characteristics as dopant in an organic light‐emitting diode (OLED) device and show chromaticity close to an ideal deep blue. The substituent effects on the photoluminescent properties may be used to tune the desired emission wavelength of related boron or other metal complexes.  相似文献   

2.
Sterically hindered 1,4‐dihydropyrrolo[3,2‐b]pyrroles possessing ortho‐(arylethynyl)phenyl substituents at positions‐2 and ‐5 were efficiently synthesized through a sila‐Sonogashira reaction. These unique Z‐shaped dyes showed relatively strong fluorescence in solution. Detailed optimization revealed that, in the presence of InCl3, these alkynes readily undergo an intramolecular double cyclization to give hexacyclic products bearing an indolo[3,2‐b]indole skeleton in remarkable yields. Steady‐state UV–visible spectroscopy revealed that upon photoexcitation, the prepared Z‐shaped alkynes undergo mostly radiative relaxation leading to high fluorescence quantum yields. In the case of 7,14‐dihydrobenzo[g]benzo[6,7]indolo[3,2‐b]indoles, we believe that the substantial planarization of geometry in the excited state, is the underlying reason for the observed large Stokes shifts. The presence of additional electron‐withdrawing groups makes it possible to further alter the photophysical properties. The two‐photon absorption cross‐section values of both families of dyes were found to be modest and the nature of the excited state responsible for two‐photon absorption appeared to be strongly affected by the presence of peripheral groups. Serendipitous synthesis of unusual double‐Z‐shaped alkyne by Sonogashira and Glaser coupling is also reported.  相似文献   

3.
4.
The synthesis, structural, and photophysical properties of a new series of original dyes based on 2‐(2′‐hydroxybenzofuran)benzoxazole (HBBO) is reported. Upon photoexcitation, these dyes exhibit intense dual fluorescence with contribution from the enol (E*) and the keto (K*) emission, with K* being formed through excited‐state intramolecular proton transfer (ESIPT). We show that the ratio of emission intensity E*/K* can be fine‐tuned by judiciously decorating the molecular core with electron‐donating or ‐attracting substituents. Push–pull dyes 9 and 10 functionalized by a strong donor (nNBu2) and a strong acceptor group (CF3 and CN, respectively) exhibit intense dual emission, particularly in apolar solvents such as cyclohexane in which the maximum wavelength of the two bands is the more strongly separated. Moreover, all dyes exhibit strong solid‐state dual emission in a KBr matrix and polymer films with enhanced quantum yields reaching up to 54 %. A wise selection of substituents led to white emission both in solution and in the solid state. Finally, these experimental results were analyzed by time‐dependent density functional theory (TD‐DFT) calculations, which confirm that, on the one hand, only E* and K* emission are present (no rotamer) and, on the other hand, the relative free energies of the two tautomers in the excited state guide the ratio of the E*/K* emission intensities.  相似文献   

5.
Although the organic dyes based on excited state intramolecular proton transfer (ESIPT) mechanism have attracted significant attention, the structure‐property relationship of ESIPT dyes needs to be further exploited. In this paper, three series of ethynyl‐extended regioisomers of 2‐(2′‐hydroxyphenyl)benzothiazole (HBT), at the 3′‐, 4′‐ and 6‐positions, respectively, have been synthesized. Changes in the absorption and emission spectra were correlated with the position and electronic nature of the substituent groups. Although 4′‐ and 6‐substituted HBT derivatives exhibited absorption bands at longer wavelengths, the keto‐emission of 3′‐substituted HBT derivatives was found at a substantially longer wavelength. The gradual red‐shifted fluorescence emission was found for 3′‐substituted HBT derivatives where the electron‐donating nature of substituent group increased, which was opposite to what was observed for 4′‐ and 6‐substituted HBT derivatives. The results derived from the theoretical calculations were in conformity with the experimental observations. Our study could potentially provide experimental and theoretical basis for designing novel ESIPT dyes that possess unique fluorescent properties.  相似文献   

6.
2‐(2′‐Hydroxyphenyl)benzoxazole (HBO) is known for undergoing intramolecular proton transfer in the excited state to result in the emission of its tautomer. A minor long‐wavelength absorption band in the range 370–420 nm has been reported in highly polar solvents such as dimethylsulfoxide (DMSO). However, the nature of this species has not been entirely clarified. In this work, we provide evidence that this long‐wavelength absorption band might have been caused by base or metal salt impurities that are introduced into the spectral sample during solvent transport using glass Pasteur pipettes. The contamination by base or metal salt could be avoided by using borosilicate glass syringes or nonglass pipettes in sample handling. Quantum chemical calculations conclude that solvent‐mediated deprotonation is too energetically costly to occur without the aid of a base of an adequate strength. In the presence of such a base, the deprotonation of HBO and its effect on emission are investigated in dichloromethane and DMSO, the latter of which facilitates deprotonation much more readily than the former. Finally, the absorption and emission spectra of HBO in 13 solvents are reported, from which it is concluded that ESIPT is hindered in polar solvents that are also strong hydrogen bond acceptors.  相似文献   

7.
Dipolar metal‐free sensitizers (D‐π‐A; D=donor, π=conjugated bridge, A=acceptor) consisting of a dithiafulvalene (DTF) unit as the electron donor, a benzene, thiophene, or fluorene moiety as the conjugated spacer, and 2‐cyanoacrylic acid as the electron acceptor have been synthesized. Dimeric congeners of these dyes, (D‐π‐A)2, were also synthesized through iodine‐induced dimerization of an appropriate DTF‐containing segment. Dye‐sensitized solar cells (DSSCs) with the new dyes as the sensitizers have cell efficiencies that range from 2.11 to 5.24 %. In addition to better light harvesting, more effective suppression of the dark current than the D‐π‐A dyes is possible with the (D‐π‐A)2 dyes.  相似文献   

8.
A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB‐G1 with 2‐(2′‐hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB‐G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π–π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB‐G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli‐responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol–gel phase transitions.  相似文献   

9.
The bidentate P,N hybrid ligand 1 allows access for the first time to novel cationic phosphinine‐based RhIII and IrIII complexes, broadening significantly the scope of low‐coordinate aromatic phosphorus heterocycles for potential applications. The coordination chemistry of 1 towards RhIII and IrIII was investigated and compared with the analogous 2,2′‐bipyridine derivative, 2‐(2′‐pyridyl)‐4,6‐diphenylpyridine ( 2 ), which showed significant differences. The molecular structures of [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl (Cp*=pentamethylcyclopentadienyl) were determined by means of X‐ray diffraction and confirm the mononuclear nature of the λ3‐phosphinine–RhIII and IrIII complexes. In contrast, a different reactivity and coordination behavior was found for the nitrogen analogue 2 , especially towards RhIII as a bimetallic ion pair [RhCl(Cp*)( 2 )]+[RhCl3(Cp*)]? is formed rather than a mononuclear coordination compound. [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl react with water regio‐ and diastereoselectively at the external P?C double bond, leading exclusively to the anti‐addition products [MCl(Cp*)( 1 H ? OH)]Cl as confirmed by X‐ray crystal‐structure determination.  相似文献   

10.
11.
The possibility of exploiting supramolecular architectures for the preparation of innovative mechanochromic devices has been extended by designing novel thienyl‐substituted 1,4‐bis(ethynyl)benzene dyes, which are characterized by a conjugated, rigid, rodlike core structure. This new family of chromophores was synthesized according to a simple two‐step sequential cross‐coupling reaction, and the optical properties were investigated in solution and in a polymeric matrix. To tune the mechanochromic performances in smart polymer materials, a virtual screening was set up that was able to select a derivative with optimal spectral features. The effective combination of experimental and computational investigations allowed us to spot those homologues with already potential anisotropic and aggregachromic features and characterized by the best spectral properties and luminescent response. The best candidate was synthesized and dispersed into a polyethylene matrix, indeed achieving an “in silico designed” mechanochromic material. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here defines an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of such supramolecular devices.  相似文献   

12.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

13.
Members of a series of boron difluoride complexes with 3‐(heteroaryl)‐2‐iminocoumarin ligands bearing both a phenolic hydroxyl group (acting as a fluorogenic center) and an N‐aryl substituent (acting as a stabilizing moiety) have been synthesized in good yields by applying a straightforward two‐step method. These novel fluorogenic dyes belong to the family of “Boricos” (D. Frath et al., Chem. Commun.­ 2013 , 49, 4908–4910) and are the first examples of phenol‐based fluorophores of which the photophysical properties in the green‐yellow spectral range are dramatically improved by N,N‐chelation of a boron atom. Modulation of their fluorescence properties through reversible chemical modification of their phenol moieties has been demonstrated by the preparation of the corresponding 2,4‐dinitrophenyl (DNP) ethers, which led to a dramatic “OFF‐ON” fluorescence response upon reaction with thiols. Additionally, to expand the scope of these “7‐hydroxy‐Borico” derivatives, particularly in biolabeling, amine or carboxylic acid functionalities amenable to (bio)conjugation have been introduced within their scaffold. Their utility has been demonstrated in the preparation of fluorescent bovine serum albumin (BSA) conjugates and “Borico”‐DOTA‐like scaffolds in an effort to design novel monomolecular multimodal fluorescence‐ radioisotope imaging agents.  相似文献   

14.
A family of highly emissive dithiazolo[5,4‐b:4′,5′‐d]phospholes has been designed and synthesized. The structures of two trivalent P species, as well as their corresponding P oxides, have been confirmed by X‐ray crystallography. The parent dithiazolo[5,4‐b:4′,5′‐d]phosphole oxide exhibits strong blue photoluminescence at λem=442 nm, with an excellent quantum yield efficiency of ?PL=0.81. The photophysical properties of these compounds can be easily tuned by extension of the conjugation and modification of the phosphorus center. Compared with the established dithieno[3,2‐b:2′,3′‐d]phosphole system, the incorporation of electronegative nitrogen atoms leads to significantly lowered frontier orbital energy levels, as validated by both electrochemistry and theoretical calculations, thus suggesting that the dithiazolo[5,4‐b:4′,5′‐d]phospholes are valuable, air‐stable, n‐type conjugated materials. These new building blocks have been further applied to the construction of an extended oligomer with fluorene. Extension of the dithiazolophosphole core with triazole units through click reactions also provides a suitable N,N‐chelating moiety for metal binding and a representative molecular species was successfully used as a selective colorimetric and fluorescent sensor for CuII ions.  相似文献   

15.
2‐(Imidazolium‐1‐yl)phenolates are conjugated heterocyclic mesomeric betaines in tautomeric equilibrium with the corresponding N‐heterocyclic carbenes (NHCs), 3‐(2‐hydroxyphenyl)‐imidazol‐2‐ylidenes. The carbene tautomers can be trapped as thiones (X‐ray analysis). Moreover, bis(triphenylphosphine)palladium(II) dichloride in THF trapped the carbene tautomer as a palladium complex without participation of the phenolate group (X‐ray analysis). The corresponding anionic NHCs, 2‐phenolate‐substituted imidazol‐2‐ylidenes, can be trapped by triethylborane or triphenylborane to form 4,4‐diethyl‐ or 4,4‐diphenyl‐4H‐benzo[e]imidazo[2,1‐c][1,4,2]oxaza‐borininium‐4‐ides, respectively (two X‐ray analyses). These tricyclic systems are the first representatives of a new heterocyclic ring system. The results of DFT calculations concerning the HOMO/LUMO profiles and partial charges are also presented.  相似文献   

16.
New, strongly fluorescent benzo[1,2‐d:4,5‐d′]bisimidazoles have been prepared by the reaction of Bandrowski′s base with various aldehydes. Their structures were carefully designed to achieve efficient excited‐state intramolecular proton transfer and good two‐photon‐absorption (2PA) cross‐sections. Functional dyes that possessed both high fluorescence quantum yields and large Stokes shifts were prepared. A π‐expanded D‐A‐D derivative that possessed Φfl=50 % and σ2=230 GM in the spectroscopic area of interest for biological imaging is an excellent candidate as a fluorescent probe. Thanks to the presence of two reactive amino groups, such compounds can be easily transformed into probes for bioconjugation. All of these benzo[1,2‐d:4,5‐d′]bisimidazoles were also strongly fluorescent in the solid state.  相似文献   

17.
A new dual luminescent sensitive paint for barometric pressure and temperature (T) is presented. The green‐emitting iridium(III) complex [Ir(ppy)2(carbac)] (ppy=2‐phenylpyridine; carbac=1‐(9H‐carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐dione) was applied as a novel probe for T along with the red‐emitting complex [Ir(btpy)3], (btpy=2‐(benzo[b]thiophene‐2‐yl)pyridine) which functions as a barometric (in fact oxygen‐sensitive) probe. Both iridium complexes were dissolved in different polymer materials to achieve optimal responses. The probe [Ir(ppy)2(carbac)] was dispersed in gas‐blocking poly(acrylonitrile) microparticles in order to suppress any quenching of its luminescence by oxygen. The barometric probe [Ir(btpy)3], in turn, was incorporated in a cellulose acetate butyrate film which exhibits good permeability for oxygen. The effects of temperature on the response of the oxygen probe can be corrected by simultaneous optical determination of T, as the poly(acrylonitrile) microparticles containing the temperature indicator are incorporated into the film. The phosphorescent signals of the probes for T and barometric pressure, respectively, can be separated by optical filters due to the ≈75 nm difference in their emission maxima. The dual sensor is applicable to luminescence lifetime imaging of T and barometric pressure. It is the first luminescent dual sensor material for barometric pressure/T based exclusively on the use of IrIII complexes in combination with luminescence lifetime imaging.  相似文献   

18.
Two donor–acceptor molecular tweezers incorporating the 10‐(1,3‐dithiol‐2‐ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal‐free sensitizers for dye‐sensitized solar cells. By changing the phenyl spacer with 3,4‐ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red‐shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge‐transfer nature of the lowest‐energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO2 surface through the two anchoring groups in a unidentate binding form. A power‐conversion efficiency of 3.7 % was obtained with a volatile CH3CN‐based electrolyte, under air mass 1.5 global sunlight. Photovoltage decay transients and ATR‐FTIR measurements allowed us to understand the photovoltaic performance, as well as the surface binding, of these new sensitizers.  相似文献   

19.
Large Stokes‐shift coumarin dyes with an O‐phosphorylated 4‐(hydroxymethyl)‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline fragment emitting in the blue, green, and red regions of the visible spectrum were synthesized. For this purpose, N‐substituted and O‐protected 1,2‐dihydro‐7‐hydroxy‐2,2,4‐trimethylquinoline was oxidized with SeO2 to the corresponding α,β‐unsaturated aldehyde and then reduced with NaBH4 in a “one‐pot” fashion to yield N‐substituted and 7‐O‐protected 4‐(hydroxymethyl)‐7‐hydroxy‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline as a common precursor to all the coumarin dyes reported here. The photophysical properties of the new dyes (“reduced coumarins”) and 1,2‐dihydroquinoline analogues (formal precursors) with a trisubstituted C=C bond were compared. The “reduced coumarins” were found to be more photoresistant and brighter than their 1,2‐dihydroquinoline counterparts. Free carboxylate analogues, as well as their antibody conjugates (obtained from N‐hydroxysuccinimidyl esters) were also prepared. All studied conjugates with secondary antibodies afforded high specificity and were suitable for fluorescence microscopy. The red‐emitting coumarin dye bearing a betaine fragment at the C‐3‐position showed excellent performance in stimulation emission depletion (STED) microscopy.  相似文献   

20.
A series of carbazole-based boron dipyrromethenes (BODIPYs) 2 a – g bearing binaphthyl units have been synthesized by the Et2AlCl-mediated reaction of the corresponding BODIPY difluorides 1 a – g with 1,1′-binaphthalene-2,2′-diol. Substituents such as halogen, nitrile, and amino groups were tolerated under the reaction conditions, and the reaction of the phenylethynyl-substituted 1 h gave (R,R)- 3 h bearing two binaphthyl units. The chiroptical properties of these dyes with different substituents were investigated by UV/Vis, CD, fluorescence, and circularly polarized luminescence (CPL) spectroscopy. The CD spectra showed Cotton effects in the absorption region of the BODIPY moieties. In addition, they showed CPL both in solution and in the solid state. Interestingly, several dyes recorded higher glum values in the solid state, probably due to intermolecular interactions. Because (R,R)- 3 h recorded relatively low glum values, the diastereomer (R,S)- 3 h was prepared. The (R,S) diastereomer showed intense CPL, which suggests a synergetic effect of the two binaphthyl groups. Finally, chiral carbazole-based BODIPY dimers have been synthesized for the first time and their chiroptical properties were investigated. They showed redshifted fluorescence and CPL, which reached the near-IR (NIR) region in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号