首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxidosqualene cyclases catalyze the transformation of oxidosqualene ( 1 ) into numerous cyclic triterpenes. Enzymatic reactions of 24‐noroxidosqualene ( 8 ) and 30‐noroxidosqualene ( 9 ) with Euphorbia tirucalli β‐amyrin synthase were conducted to examine the role of the branched methyl groups of compound 1 in the β‐amyrin biosynthesis. Substrate 8 almost exclusively afforded 30‐nor‐β‐amyrin (>95.5 %), which was produced through a normal cyclization pathway, along with minor products (<4.5 %). However, a lack of the Me‐30 group (analogue 9 ) resulted in significantly high production of premature cyclization products, including 6/6/6/5‐fused tetracyclic and 6/6/6/6/5‐fused pentacyclic skeletons (64.6 %). In addition, the fully cyclized product (35.4 %) having the 6/6/6/6/6‐fused pentacycle was produced; however, the normally cyclized product, 29‐nor‐β‐amyrin was present in only 18.6 % of these products. The conversion yield of substrate 8 possessing a Z‐Me group at the terminus was approximately twofold greater than that of compound 9 with an E‐Me group. Thus, the Me‐30 group is essential for the correct folding of a chair–chair–chair–boat–boat conformation of compound 1 for the production of the β‐amyrin scaffold, whereas the Me‐24 group exerts little influence on the normal polycyclization cascade. Here, we show that the Me‐30 group plays critical roles in constructing the ordered architecture of a chair–chair–chair–boat–boat structure, in facilitating the ring‐expansion reactions, and in performing the final deprotonation reaction at the correct position.  相似文献   

2.
Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.  相似文献   

3.
To better understand the mechanism by which the activating signal is transmitted from the receptor‐interacting regions on the G protein α‐subunit (Gα) to the guanine nucleotide‐binding pocket, we generated and characterized mutant forms of Gα with alterations in switch II (Trp‐207→Phe) and the carboxyl‐terminus (Phe‐350→Ala). Previously reported bacterial expression methods for the high‐level production of a uniformly isotope‐labeled G/Gi1α chimera, ChiT, were successfully used to isolate milligram quantities of 15N‐labeled mutant protein. NMR analysis showed that while the GDP/Mg2+‐bound state of both mutants shared an overall conformation similar to that of the GDP/Mg2+‐bound state of ChiT, formation of the “transition/activated” state in the presence of aluminum fluoride (AlF4?) revealed distinct differences between the wild‐type and mutant Gα subunits, particularly in the response of the 1HN, 15N cross‐peak for the Trp‐254 indole in the Trp‐207→Phe mutant and the 1HN, 15N cross‐peak for Ala‐350 in the Phe‐350→Ala mutant. Consistent with the NMR data, the F350→Ala mutant showed an increase in intrinsic fluorescence that was similar to G and ChiT upon formation of the “transition/activated” state in the presence of AlF4?, whereas the intrinsic fluorescence of the Trp‐207→Phe mutant decreased. These results show that the substitution of key amino acid positions in Gα can effect structural changes that may compromise receptor interactions and GDP/GTP exchange.  相似文献   

4.
The aim of the present study was the investigation of the effect of urea on analyte complexation in CD‐mediated separations of peptide enantiomers by CE in the pH range of about 2–5. pH‐independent complexation and mobility parameters in the absence and presence of 2 M urea were obtained by three‐dimensional, non‐linear curve fitting of the effective analyte mobility as a function of pH and heptakis‐(2,6‐di‐O‐methyl)‐β‐CD concentration. Urea led to decreased binding strength of the CD towards the protonated and neutral analyte enantiomers as well as to decreased mobilities of the free analytes. In contrast, mobilities of the fully protonated enantiomer–CD complexes as well as the pKa values of the free and complexed analytes increased. The effect of urea on separation efficiency varied with pH and CD concentration. In the case of Ala‐Tyr and Ala‐Phe, separations improved in the presence of urea at pH 2.2. In contrast, separations were impaired by urea at pH 3.8 and low concentrations of the CD. Decreased separation efficiency was noted for Asp‐PheOMe and Glu‐PheNH2 at low CD concentrations when urea was added but separations improved at higher CD concentrations over the entire pH range studied. The effect of urea on analyte complexation appeared to be primarily non‐stereoselective. Furthermore, the pH‐dependent reversal of the enantiomer migration order observed for Ala‐Tyr and Ala‐Phe can be rationalized by the complexation and mobility parameters.  相似文献   

5.
A popular strategy in the de novo design of stable β‐sheet structures for various biomedical applications is the incorporation of aromatic pairs at the non‐hydrogen‐bonding (NHB) position. However, it is important to explicitly understand how aryl pair packing at the NHB region is coordinated with backbone structural rearrangements, and to delineate the benefits and drawbacks associated with stereopositional choice of dissimilar aromatic pairs. Here, we probe the consequences of flipped Trp/Tyr pairs by using engineered permutants at the NHB position of dodecapeptide β‐hairpins, proximal and distal to the turn. Extensive conformational analysis of these peptides using NMR and CD spectroscopy reveal that a classic Edge‐to‐Face and Face‐to‐Edge geometry at the proximal and distal aromatic pairs, respectively, in YW‐WY, is the most stabilizing. Such a preferred packing geometry in YW‐WY results in a highly twisted β‐sheet backbone, with Trp always providing a ‘Face’ orientation to its dissimilar aromatic partner Tyr. Flipping the proximal and/or distal aromatic pair distorts the ideal T‐shaped geometry, and results in alternate aryl arrangements that can adversely affect strand twist and β‐sheet stability. Our study reveals the existence of a strong stereopositional influence on the packing of dissimilar aromatic pairs. Our findings highlight the importance of modeling physical interaction forces while designing protein and peptide structures for functional applications.  相似文献   

6.
Stereospecific capillary electrophoresis‐based methods for the analysis of methionine sulfoxide [Met(O)]‐containing pentapeptides were developed in order to investigate the reduction of Met(O)‐containing peptide substrates by recombinant Aspergillus nidulans methionine sulfoxide reductase A (MsrA) as well as enzymes carrying mutations in position Glu99 and Asp134. The separation of the diastereomers of the N‐acetylated, C‐terminally 2,4‐dinitrophenyl (Dnp)‐labeled pentapeptides ac‐Lys‐Phe‐Met(O)‐Lys‐Lys‐Dnp, ac‐Lys‐Asp‐Met(O)‐Asn‐Lys‐Dnp and ac‐Lys‐Asn‐Met(O)‐Asp‐Lys‐Dnp was achieved in 50 mM Tris‐HCl buffers containing sulfated β‐CD in fused‐silica capillaries, while the diastereomer separation of ac‐Lys‐Asp‐Met(O)‐Asp‐Lys‐Dnp was achieved by sulfated β‐CD‐mediated MEKC. The methods were validated with regard to range, linearity, accuracy, limits of detection and quantitation as well as precision. Subsequently, the substrates were incubated with wild‐type MsrA and three mutants in the presence of dithiothreitol as reductant. Wild‐type MsrA displayed the highest activity towards all substrates compared to the mutants. Substitution of Glu99 by Gln resulted in the mutant with the lowest activity towards all substrates except for ac‐Lys‐Asn‐Met(O)‐Asp‐Lys‐Dnp, while replacement Asn for Asp134 lead to a higher activity towards ac‐Lys‐Asp‐Met(O)‐Asn‐Lys‐Dnp compared with the Glu99 mutant. The mutant with Glu instead of Asp134 was the most active among the mutant enzymes. Molecular modeling indicated that the conserved Glu99 residue is buried in the Met‐S‐(O) groove, which might contribute to the correct placing of substrates and, consequently, to the catalytic activity of MsrA, while Asp134 did not form hydrogen bonds with the substrates but only within the enzyme.  相似文献   

7.
The backbone cleavages of protonated tripeptide ions of the series Gly—Gly—Xxx, where Xxx ? Gly, Ala, Val, d-Leu, l-Leu, Ile, Phe, Tyr, Trp, Pro, Met and Glu, were studied in a hybrid tandem mass spectrometer. C-Terminal y-type ions and N-terminal a- and b-type ions were noted. A linear relationship between log (y1/b2) and the proton affinity of the C-terminal amino acid substituents was found: as the proton affinity of the C-terminal residue increases, the fraction of y1 ion formation increases. When the C-terminal substituent was more basic than Trp, the b2 ion was not observed. It is likely that the site of protonation changes from peptide bond to side-chain for just these residues, Lys, His and Arg.  相似文献   

8.
KIA7, a peptide with a highly restricted set of amino acids (Lys, Ile, Ala, Gly and Tyr), adopts a specifically folded structure. Some amino acids, including Lys, Ile, Ala, Gly and His, form under the same putative prebiotic conditions, whereas different conditions are needed for producing Tyr, Phe and Trp. Herein, we report the 3D structure and conformational stability of the peptide KIA7H, which is composed of only Lys, Ile, Ala, Gly and His. When the imidazole group is neutral, this 20‐mer peptide adopts a four‐helix bundle with a specifically packed hydrophobic core. Therefore, one‐pot prebiotic proteins with well‐defined structures might have arisen early in chemical evolution. The Trp variant, KIA7W, was also studied. It adopts a 3D structure similar to that of KIA7H and its previously studied Tyr and Phe variants, but is remarkably more stable. When tested for ribonucleolytic activity, KIA7H, KIA7W and even short, unstructured peptides rich in His and Lys, in combination with Mg++, Mn++ or Ni++ (but not Cu++, Zn++ or EDTA) specifically cleave the single‐stranded region in an RNA stem–loop. This suggests that prebiotic peptide–divalent cation complexes with ribonucleolytic activity might have co‐inhabited the RNA world.  相似文献   

9.
α,β‐Unsaturated amino acids (dehydroamino acids) have been found in naturally occurring antibiotics of microbial origin and in some proteins. Due to the presence of the CαCβ double bond, the dehydroamino acids influence the main‐chain and the side‐chain conformations. The lowest‐energy conformational state of the model tripeptides, Ac–X–ΔAla–NHMe, (X=Ala, Val, Leu, Abu, or Phe) corresponds to ϕ1=−30°, ψ1=120° and ϕ22=30°. This structure is stabilized by the hydrogen bond between CO of the acetyl group and the NH of the amide group, resulting in the formation of a 10‐membered ring. In the model heptapeptide containing ΔAla at alternate position with Ala, Abu, and Leu, the lowest‐energy conformation corresponds to ϕ=−30° and ψ=120° for all the Ala, Abu, and Leu residues and ϕ=ψ=30° for all ΔAla residues. A graphical view of the molecule in this conformation reveals the formation of three hydrogen bonds involving the CO moiety of the ith residue and the NH moiety of the i+3th residue, resulting in a 10‐membered ring formation. In this structure, only alternate peptide bonds are involved in the intramolecular hydrogen‐bond formation unlike the helices and it has been named the β‐bend ribbon structure. The helical structures were predicted to be the most stable structures in the heptapeptide Ac–(Aib–ΔAla)3–NHMe with ϕ=±30°, ψ=±60° for Aib residues and ϕ=ψ=±30° for ΔAla residues. The computational results reveal that the ΔAla residue does not induce an inverse γ‐turn in the preceding residue. It is the competitive interaction of small solvent molecules with the hydrogen‐bonding sites of the peptide which gives rise to the formation of an inverse γ‐turn (ϕ1=−54°, ψ1=82°; ϕ2=44°, ψ2=3°) in the preceding residue to ΔAla. The computational studies for the positional preference of ΔAla in the peptide containing one ΔAla and nine Ala residues reveals the formation of a 310 helical structure in all the cases with the terminal preferences for ΔAla, consistent with the position of ΔAla in the natural antibiotics. The extended structures is found to be the most stable for poly‐ΔAla. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 15–23, 1999  相似文献   

10.
《化学:亚洲杂志》2017,12(24):3195-3202
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2‐aminobenzoic acid (2‐Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2N‐d ‐Leu‐d ‐Phe‐2‐Abz‐d ‐Ala‐COOH ( 1 ) reveals a novel planar peptidomimetic β‐turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N ‐Me‐d ‐Phe analogue ( 2 ) adopt pseudo‐cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4 . The crystal structure of the N ‐methylated peptide ( 4 ) is the first reported for a CTP containing 2‐Abz and reveals a distinctly planar 13‐membered ring, which is also evident in solution. The N ‐methylation of d ‐Phe results in a peptide bond inversion compared to the conformation of 3 in solution.  相似文献   

11.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

12.
Ynolates were found to react with α‐alkoxy‐, α‐siloxy‐, and α‐aryloxyketones at room temperature to afford tetrasubstituted olefins with high Z selectivity. Since the geometrical selectivity was determined in the ring opening of the β‐lactone enolate intermediates, the torquoselectivity was controlled by the ethereal oxygen atoms. From experimental and theoretical studies, the high Z selectivity is induced by orbital and steric interactions rather than by chelation. In a similar manner, α‐dialkylamino ketones provided olefins with excellent Z selectivity. These products can be easily converted into multisubstituted butenolides and γ‐butyrolactams in good yield.  相似文献   

13.
The decomposition of 59 different cluster ions (generated by fast atom bombardment) consisting of two different amino acids and a sodium ion was analysed. The only fragment ions of significant abundance could be assigned to sodium ion-bound amino acids. Assuming that the most abundant ion in the fragment ion spectrum corresponds to the amino acid with the highest sodium ion affinity (SIA), the 20 common α-amino acids could be ordered with increasing sodium ion affinity as follows: Gly, Ala, Cys, Val, (Leu, Ile), Ser, Met, Thr, (Phe, Pro), Asp, Tyr, (Glu, Lys), Trp, Asn, Gln, His, Arg. Quantitative determinations were carried out by comparison of the lithium ion affinity (LIA) of Ala with that of dimethylformamide (DMF) in a fragment ion scan of the ion-bound dimer Ala—Li+—DMF. LIA(Ala) was calculated from LIA(Ala) = LIA(DMF) – (1/C)ln[I(AlaLi+)/I(DMF—Li+)], where the constant C was estimated from measurements of proton-bound amine–amino acid clusters. From fragment ion analysis of nine other Li+-bound α-amino acid dimers, the following lithium ion affinities were obtained: Gly 51.0, Ala 52.6, Sar 53.5, α-aminobutyric acid 53.7, glycine methyl ester 54.7 and Val 54.8. SIA(Ala) was estimated to be 75% of the lithium ion affinity and from fragment ion analysis of ten Na+-bound α-amino acid dimers the following sodium ion affinities were obtained: Gly 37.9, Ala 39.4, α-aminobutyric acid 40.3, Val 41.0, glycine methylster 41.0 and Sar 41.2.  相似文献   

14.
The N‐carboxyanhydrides (NCAs) of sarcosine (Sar), D ,L ‐leucine (D ,L ‐Leu), D ,L ‐phenylalanine (D ,L ‐Phe), and L ‐alanine (L ‐Ala) were polymerized in dioxane. Imidazole served as initiator and the NCA/initiator ratio was varied from 1/1 to 40/1. The isolated polypeptides were characterized by 1H NMR spectroscopy, by MALDI‐TOF mass spectrometry, by viscosity measurements, and by SEC measurements in the case of poly(sarcosine). Cyclic oligopeptides were found in all reaction products and in the case of polySar, poly(D ,L ‐Leu), and poly(D ,L ‐Phe) the cycles were the main products. In the case of poly(L ‐Ala), rapid precipitation of β‐sheet lamellaes prevented efficient cyclizations and stabilized imidazolide endgroups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5690–5698, 2005  相似文献   

15.
The enzymatic synthesis of the cholecystokinin octapeptide (CCK‐8) is reported. The target octapeptide CCK‐8 is the minimum active sequence with the same biological activity as naturally occurring cholecystokinin and is a potential therapeutic agent in the control of gastrointestinal function as well as a drug candidate for the treatment of epilepsy and obesity. The protected CCK‐8 was obtained by incubation of Bz‐Arg‐Asp(OEt)‐Tyr‐Met‐OAl and Gly‐Trp‐Met‐Asp(OMe)‐Phe‐NH2 with immobilized α‐chymotrypsin. The Bz‐Arg group was used as an N‐terminal protecting group in the synthesis of the tripeptide fragment. The protected CCK‐8 was treated with trypsin to remove the Bz‐Arg group successfully. Free or immobilized enzymes were used as catalysts. The effect of the acyl donor ester structure, the C(α) protecting group of the nucleophile, reaction media, enzyme, and the carrier of the enzymes on the outcome of the coupling reaction was studied.  相似文献   

16.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

17.
The functionality of bioactive molecules sensitively depends on their structure. For the investigation of intrinsic structural properties, molecular beam experiments combined with laser spectroscopy have proven to be a suitable tool. Herein we present an analysis of the two isolated tripeptide model systems Ac‐Phe‐Tyr(Me)‐NHMe and Boc‐Phe‐Tyr(Me)‐NHMe. For this purpose, mass‐selective combined IR/UV spectroscopy is applied to both substances in a molecular beam experiment. The comparison of the experimental data with DFT calculations, including different functionals as well as dispersion corrections, allows an assignment of both tripeptide models to β‐turns formed independently from the protection groups and supported by the interaction of the two aromatic chromophores.  相似文献   

18.
Pauling and Corey proposed a pleated‐sheet configuration, now called α‐sheet, as one of the protein secondary structures in addition to α‐helix and β‐sheet. Recently, it has been suggested that α‐sheet is a common feature of amyloidogenic intermediates. We have investigated the stability of antiparallel β‐sheet and two conformations of α‐sheet in solution phase using the density functional theoretical method. The peptides are modeled as two‐strand acetyl‐(Ala)2N‐methylamine. Using stages of geometry optimization and single point energy calculation at B3LYP/cc‐pVTZ//B3LYP/6‐31G* level and including zero‐point energies, thermal, and entropic contribution, we have found that β‐sheet is the most stable conformation, while the α‐sheet proposed by Pauling and Corey has 13.6 kcal/mol higher free energy than the β‐sheet. The α‐sheet that resembles the structure observed in molecular dynamics simulations of amyloidogenic proteins at low pH becomes distorted after stages of geometry optimization in solution. Whether the α‐sheets with longer chains would be increasingly favorable in water relative to the increase in internal energy of the chain needs further investigation. Different from the quantum mechanics results, AMBER parm94 force field gives small difference in solution phase energy between α‐sheet and β‐sheet. The predicted amide I IR spectra of α‐sheet shows the main band at higher frequency than β‐sheet. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
Cyclic D,L ‐α‐peptides are able to self‐assemble to nanotubes, although the inherent reason of the stability of this kind of nanotube as well as the intrinsic driving force of self‐assembly of the cyclic D ,L ‐α‐peptides still remain elusive. In this work, using several computational approaches, we investigated the structural and energy characteristics of a series of cyclo[(‐L ‐Phe‐D ‐Ala‐)4] and cyclo[(‐L ‐Ala‐D ‐Ala‐)4] oligomers. The results reveal that the thermodynamic stability, cooperativity, and self‐assembly patterns of cyclic D ,L ‐α‐peptide nanotubes are mainly determined by the interactions between cross‐strand side chains instead of those between backbones. For cyclo[(‐L ‐Phe‐D ‐Ala‐)4] oligomers, the steric interaction between cross‐strand side chains, especially the electrostatic repulsion between the phenyls in Phe residues, brings anticooperative effect into parallel stacking mode, which is responsible for the preference of self‐assembling nanotube in antiparallel vs. parallel stacking orientation. Based on our results, a novel self‐assembling mechanism is put forward—it is the L ‐L antiparallel dimer of cyclo[(‐L ‐Phe‐D ‐Ala‐)4], instead of the commonly presumed monomer, that acts as the basic building block in self assembly. It explains why these cyclic peptides uniquely self‐assemble to form antiparallel nanotubes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
Two new cyclic tetrapeptides, cyclo(l ‐Val‐l ‐Leu‐l ‐Val‐l ‐Ile) ( 1 ) and cyclo(l ‐Leu‐l ‐Leu‐l ‐Ala‐l ‐Ala) ( 2 ), and 15 known compounds, cyclo(Gly‐l ‐Leu‐Gly‐l ‐Leu) ( 3 ), cyclo(l ‐Ser‐l ‐Phe) ( 4 ), cyclo(l ‐Leu‐l ‐Ile) ( 5 ), cyclo(l ‐Tyr‐l ‐Phe) ( 6 ), cyclo(Gly‐l ‐Trp) ( 7 ), cyclo(l ‐Leu‐l ‐Tyr) ( 8 ), cyclo(Gly‐l ‐Phe) ( 9 ), cyclo(l ‐Phe‐trans‐4‐hydroxy‐l ‐Pro) ( 10 ), cyclo(l ‐Leu‐l ‐Leu) ( 11 ), cyclo(l ‐Val‐l ‐Phe) ( 12 ), cyclo(l ‐Val‐l ‐Leu) ( 13 ), cyclo(l ‐Ile‐l ‐Ile) ( 14 ), cyclo(l ‐Tyr‐l ‐Tyr) ( 15 ), turnagainolide A ( 16 ), and bacimethrin ( 17 ) were isolated from the fermentation broth of Streptomyces rutgersensis T009 obtained from Elaphodus davidianus excrement. Their structures were identified on the basis of spectroscopic analysis. Meanwhile, the absolute configurations of the amino acid residues of compounds 1 and 2 were determined by advanced Marfey method. Compound 3 was obtained from a natural source for the first time. The X‐ray single crystal diffraction data of bacimethrin ( 17 ) were also reported for the first time. Compounds 1  –  17 exhibited no antimicrobial activities with the MICs > 100 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号