首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We prepared an iridium polymer complex having 2‐phenylpyridine as a η2‐cyclometallated ligand, a new OLED containing a solution‐processible iridium polymer as a host, and a phosphorescent iridium complex, [Ir(piq‐tBu)3] as a guest. This is the first example to apply a phosphorescent iridium complex polymer to a host material in a phosphorescent OLED. A phosphine copolymer ligand made from methyl methacrylate (MMA) and 4‐styryldiphenylphosphine can be used as an anchor polymer, which coordinates to luminescent iridium units to form a host metallopolymer easily. The OLED containing the host iridium‐complex polymer film, in which the guest, 2 wt % Ir(piq‐tBu)3, was doped, showed red electroluminescence as a result of efficient energy transfer from the iridium polymer host to the iridium guest. The maximum current efficiency of the device was 1.00, suggesting that a soluble iridium complex polymer can be used as a solution‐processible polymer host in EL devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4358–4365, 2009  相似文献   

2.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

3.
Two new iridium(III) complexes containing benzothiazol-2-yl carbazole derivative as a cyclometalated ligand (L) and picolinate (pic) or acetylacetonate (acac) as the ancillary ligand, Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(picolinate) [Ir(L)2(pic)] and Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(acetylacetonate) [Ir(L)2(acac)], were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, and UV–Vis absorption spectra. Both the iridium(III) complexes emit intense green–yellow emissions, indicating that they are useful for the fabrication of organic light-emitting diodes.  相似文献   

4.
In the present study, four mitochondria‐specific and two‐photon phosphorescence iridium(III) complexes, Ir1 – Ir4 , were developed for mitochondria imaging in hypoxic tumor cells. The iridium(III) complex has two anthraquinone groups that are hypoxia‐sensitive moieties. The phosphorescence of the iridium(III) complex was quenched by the functions of the intramolecular quinone unit, and it was restored through two‐electron bioreduction under hypoxia. When the probes were reduced by reductase to hydroquinone derivative products under hypoxia, a significant enhancement in phosphorescence intensity was observed under one‐ (λ=405 nm) and two‐photon (λ=720 nm) excitation, with a two‐photon absorption cross section of 76–153 GM at λ=720 nm. More importantly, these probes possessed excellent specificity for mitochondria, which allowed imaging and tracking of the mitochondrial morphological changes in a hypoxic environment over a long period of time. Moreover, the probes can visualize hypoxic mitochondria in 3D multicellular spheroids and living zebrafish through two‐photon phosphorescence imaging.  相似文献   

5.
A new class of phosphorescent cyclometalated iridium(III)–polyamine complexes [{Ir(N^C)2}n(bPEI)](PF6)n (bPEI=branched poly(ethyleneimine), average Mw=25 kDa, n=15.6–27.4; HN^C=2‐phenylpyridine Hppy ( 1 a ), 2‐((1,1′‐biphenyl)‐4‐yl)pyridine Hpppy ( 2 a ), 2‐phenylquinoline Hpq ( 3 a ), 2‐phenylbenzothiazole Hbt ( 4 a ), 2‐(1‐naphthyl)benzothiazole Hbsn ( 5 a )) and [Ir(N^C)2(en)](PF6) (en=ethylenediamine; HN^C=Hppy ( 1 b ), Hpppy ( 2 b ), Hpq ( 3 b ), Hbt ( 4 b ), Hbsn ( 5 b )) have been synthesized and characterized. The X‐ray crystal structure of complex 5 b was also determined. All of these complexes showed a reversible iridium(IV/III) oxidation couple at +1.01 to +1.26 V and a quasi‐reversible ligand‐based reduction couple at ?1.54 to ?2.08 V (versus SCE). Upon photoexcitation, the complexes displayed intense and long‐lived green to orange–red emission in fluid solutions at room temperature and in low‐temperature glass. Lipophilicity measurements indicated that bPEI played a dominant role in the polar nature of complexes 1 a – 5 a , thus rendering them very soluble in aqueous solutions. Inductively coupled plasma–mass spectrometry (ICP‐MS) and confocal laser scanning microscopy (CLSM) data indicated that an energy‐requiring process, such as endocytosis, was involved in the cellular uptake of all of the complexes. In addition, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) and human embryonic kidney 293T (HEK293T) cell‐lines has been evaluated by the 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The DNA‐binding properties of complex 5 a have been investigated by gel‐retardation assays and the polyplexes that were formed from this complex with plasmid DNA (pDNA) were studied by zeta‐potential measurements and particle‐size estimation. Furthermore, complex 5 a was grafted with poly(ethylene glycol) (PEG, average Mw=2 kDa) to different extents, thereby yielding the phosphorescent copolymers PEG12.3g‐5 a , PEG25.4g‐5 a , and PEG62.1g‐5 a . Interestingly, these copolymers showed enhanced transfection activity, as revealed by in vitro transfection experiments with tissue‐culture‐based luciferase assays.  相似文献   

6.
The synthesis of fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?CH)}3] ( 10 ), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?C‐trans‐[RuCl(dppe)2])}3] ( 11 ) is described. Complex 10 is available from the two‐step formation of iodo‐functionalized fac‐tris[2‐(4‐iodophenyl)pyridine]iridium(III) ( 6 ), followed by ligand‐centered palladium‐catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2‐(4‐iodophenyl)pyridine‐N,C1′](μ‐dichloro)diiridium 5 , 6 , fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CH)}3] ( 8 ), and 10 confirm ligand‐centered derivatization of the tris(2‐phenylpyridine)iridium unit. Electrochemical studies reveal two ( 5 ) or one ( 6 – 10 ) Ir‐centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru‐centered and Ir‐centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′‐NC5H4‐2‐C6H4‐2)3. Ligand‐centered π–π* transitions characteristic of the Ir(N,C′‐NC5H4‐2‐C6H4‐2)3 unit red‐shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6 , 7 , 9 , and 11 reveal the appearance in each case of new low‐energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11 , by the appearance of a low‐energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6 – 10 reveal a red‐shift upon alkynyl group introduction and arylalkynyl π‐system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11 . Third‐order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two‐photon absorption, and results from the latter being consistent with primarily excited‐state absorption.  相似文献   

7.
Compared to tris(2‐phenylpyridine)iridium(III) ([Ir(ppy)3]), iridium(III) complexes containing difluorophenylpyridine (df‐ppy) and/or an ancillary triazolylpyridine ligand [3‐phenyl‐1,2,4‐triazol‐5‐ylpyridinato (ptp) or 1‐benzyl‐1,2,3‐triazol‐4‐ylpyridine (ptb)] exhibit considerable hypsochromic shifts (ca. 25–60 nm), due to the significant stabilising effect of these ligands on the HOMO energy, whilst having relatively little effect on the LUMO. Despite their lower photoluminescence quantum yields compared with [Ir(ppy)3] and [Ir(df‐ppy)3], the iridium(III) complexes containing triazolylpyridine ligands gave greater electrogenerated chemiluminescence (ECL) intensities (using tri‐n‐propylamine (TPA) as a co‐reactant), which can in part be ascribed to the more energetically favourable reactions of the oxidised complex (M+) with both TPA and its neutral radical oxidation product. The calculated iridium(III) complex LUMO energies were shown to be a good predictor of the corresponding M+ LUMO energies, and both HOMO and LUMO levels are related to ECL efficiency. The theoretical and experimental data together show that the best strategy for the design of efficient new blue‐shifted electrochemiluminophores is to aim to stabilise the HOMO, while only moderately stabilising the LUMO, thereby increasing the energy gap but ensuring favourable thermodynamics and kinetics for the ECL reaction. Of the iridium(III) complexes examined, [Ir(df‐ppy)2(ptb)]+ was most attractive as a blue‐emitter for ECL detection, featuring a large hypsochromic shift (λmax=454 and 484 nm), superior co‐reactant ECL intensity than the archetypal homoleptic green and blue emitters: [Ir(ppy)3] and [Ir(df‐ppy)3] (by over 16‐fold and threefold, respectively), and greater solubility in polar solvents.  相似文献   

8.
Luminescent CuI complexes have emerged as promising substitutes for phosphorescent emitters based on Ir, Pt and Os due to their abundance and low cost. The title heteroleptic cuprous complex, [9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene‐κ2P ,P ](2‐methylquinolin‐8‐ol‐κ2N ,O )copper(I) hexafluorophosphate, [Cu(C10H9NO)(C39H32OP2)]PF6, conventionally abbreviated as [Cu(Xantphos)(8‐HOXQ)]PF6, where Xantphos is the chelating diphosphine ligand 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene and 8‐HOXQ is the N ,O‐chelating ligand 2‐methylquinolin‐8‐ol that remains protonated at the hydroxy O atom, is described. In this complex, the asymmetric unit consists of a hexafluorophosphate anion and a whole mononuclear cation, where the CuI atom is coordinated by two P atoms from the Xantphos ligand and by the N and O atoms from the 8‐HOXQ ligand, giving rise to a tetrahedral CuP2NO coordination geometry. The electronic absorption and photoluminescence properties of this complex have been studied on as‐synthesized samples, whose purity had been determined by powder X‐ray diffraction. In the detailed TD–DFT (time‐dependent density functional theory) studies, the yellow emission appears to be derived from the inter‐ligand charge transfer and metal‐to‐ligand charge transfer (M +L ′)→LCT excited state (LCT is ligand charge transfer).  相似文献   

9.
A novel cationic IrIII complex [Ir(Bpq)2(CzbpyCz)]PF6 (Bpq=2‐[4‐(dimesitylboryl)phenyl]quinoline, CzbpyCz = 5,5′‐bis(9‐hexyl‐9H‐carbazol‐3‐yl)‐2,2′‐bipyridine) containing both triarylboron and carbazole moieties was synthesized. The excited‐state properties of [Ir(Bpq)2(CzbpyCz)]PF6 were investigated through UV/Vis absorption and photoluminescence spectroscopy and molecular‐orbital calculations. This complex displayed highly efficient orange‐red phosphorescent emission with an emission peak of 583 nm and quantum efficiency of Φ=0.30 in dichloromethane at room temperature. The binding of fluoride ions to [Ir(Bpq)2(CzbpyCz)]PF6 can quench the phosphorescent emission from the IrIII complex and enhance the fluorescent emission from the N^N ligand, which corresponds to a visual change in the emission from orange‐red to blue. Thus, both colorimetric and ratiometric fluoride sensing can be realized. Interestingly, an unusual intense absorption band in the visible region was observed. And the detection of F? ions can also be carried out with visible light as the excitation wavelength. More importantly, the linear response of the probe absorbance change at λ=351 nm versus the concentration of F? ions allows efficient and accurate quantification of F? ions in the range 0–50 μM .  相似文献   

10.
We study the excited states of two iridium(III) complexes with potential applications in organic light‐emitting diodes: fac‐tris(2‐phenylpyridyl)iridium(III) [Ir(ppy)3] and fac‐tris(1‐methyl‐5‐phenyl‐3‐n‐propyl‐[1,2,4]triazolyl)iridium(III) [Ir(ptz)3]. Herein we report calculations of the excited states of these complexes from time‐dependent density functional theory (TDDFT) with the zeroth‐order regular approximation (ZORA). We show that results from the one‐component formulation of ZORA, with spin–orbit coupling included perturbatively, accurately reproduce both the results of the two‐component calculations and previously published experimental absorption spectra of the complexes. We are able to trace the effects of both scalar relativistic correction and spin–orbit coupling on the low‐energy excitations and radiative lifetimes of these complexes. In particular, we show that there is an indirect relativistic stabilisation of the metal‐to‐ligand charge transfer (MLCT) states. This is important because it means that indirect relativistic effects increase the degree to which SOC can hybridise singlet and triplet states and hence plays an important role in determining the optical properties of these complexes. We find that these two compounds are remarkably similar in these respects, despite Ir(ppy)3 and Ir(ptz)3 emitting green and blue light respectively. However, we predict that these two complexes will show marked differences in their magnetic circular dichroism (MCD) spectra.  相似文献   

11.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

12.
A new cyclometalated iridium(III) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was pre-pared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, 1H NMR, and mass spec-troscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong 1MLCT (singlet metal to ligand charge-transfer) and 3MLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respec-tively. The complex also shows strong photoluminescence at 573 nm at room temperature.These results suggest the complex to be a promising phosphorescent material.  相似文献   

13.
By combining the iridium(III) ppy‐type complex (Hppy=2‐phenylpyridine) with a square‐planar platinum(II) unit, some novel phosphorescent oligometallaynes bearing dual metal centers (viz. IrIII and PtII) were developed by combining trans‐[Pt(PBu3)2Cl2] with metalloligands of iridium possessing bifunctional pendant acetylene groups. Photophysical and computational studies indicated that the phosphorescent excited states arising from these oligometallaynes can be ascribed to the triplet emissive IrIII ppy‐type chromophore, owing to the obvious trait (such as the longer phosphorescent lifetime at 77 K) also conferred by the PtII center. So, the two different metal centers show a synergistic effect in governing the photophysical behavior of these heterometallic oligometallaynes. The inherent nature of these amorphous materials renders the fabrication of simple solution‐processed doped phosphorescent organic light‐emitting diodes (PHOLEDs) feasible by effectively blocking the close‐packing of the host molecules. Saliently, such a synergistic effect is also important in affording decent device performance for the solution‐processed PHOLEDs. A maximum brightness of 3 356 cd m?2 (or 2 708 cd m?2), external quantum efficiency of 0.50 % (or 0.67 %), luminance efficiency of 1.59 cd A?1 (or 1.55 cd A?1), and power efficiency of 0.60 Lm W?1 (or 0.55 Lm W?1) for the yellow (or orange) phosphorescent PHOLEDs can be obtained. These results show the great potential of these bimetallic emitters for organic light‐emitting diodes.  相似文献   

14.
A new dual luminescent sensitive paint for barometric pressure and temperature (T) is presented. The green‐emitting iridium(III) complex [Ir(ppy)2(carbac)] (ppy=2‐phenylpyridine; carbac=1‐(9H‐carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐dione) was applied as a novel probe for T along with the red‐emitting complex [Ir(btpy)3], (btpy=2‐(benzo[b]thiophene‐2‐yl)pyridine) which functions as a barometric (in fact oxygen‐sensitive) probe. Both iridium complexes were dissolved in different polymer materials to achieve optimal responses. The probe [Ir(ppy)2(carbac)] was dispersed in gas‐blocking poly(acrylonitrile) microparticles in order to suppress any quenching of its luminescence by oxygen. The barometric probe [Ir(btpy)3], in turn, was incorporated in a cellulose acetate butyrate film which exhibits good permeability for oxygen. The effects of temperature on the response of the oxygen probe can be corrected by simultaneous optical determination of T, as the poly(acrylonitrile) microparticles containing the temperature indicator are incorporated into the film. The phosphorescent signals of the probes for T and barometric pressure, respectively, can be separated by optical filters due to the ≈75 nm difference in their emission maxima. The dual sensor is applicable to luminescence lifetime imaging of T and barometric pressure. It is the first luminescent dual sensor material for barometric pressure/T based exclusively on the use of IrIII complexes in combination with luminescence lifetime imaging.  相似文献   

15.
A series of iridium tetrahydride complexes [Ir(H)4(PSiP‐R)] bearing a tridentate pincer‐type bis(phosphino)silyl ligand ([{2‐(R2P)C6H4}2MeSi], PSiP‐R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP‐R)] with Me4N ⋅ BH4 under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)–dinitrogen complexes, [Ir(H)2(N2)(PSiP‐R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively. Attempted substitution of the dinitrogen ligand in [Ir(H)2(N2)(PSiP‐Cy)] with PMe3 required heating at 150 °C to give the expected [Ir(H)2(PMe3)(PSiP‐Cy)] and a trigonal bipyramidal iridium(I)–dinitrogen complex, [Ir(N2)(PMe3)(PSiP‐Cy)]. The reaction of [Ir(H)4(PSiP‐Cy)] with three equivalents of 2‐norbornene (nbe) in benzene afforded [IrI(nbe)(PSiP‐Cy)] in a high yield, while a similar reaction of [Ir(H)4(PSiP‐R)] with an excess of 3,3‐dimethylbutene (tbe) in benzene gave the C H bond activation product, [IrIII(H)(Ph)(PSiP‐R)], in high yield. The oxidative addition of benzene is reversible; heating [IrIII(H)(Ph)(PSiP‐Cy)] in the presence of PPh3 in benzene resulted in reductive elimination of benzene, coordination of PPh3, and activation of the C H bond of one aromatic ring in PPh3. [IrIII(H)(Ph)(PSiP‐R)] catalyzed a direct borylation reaction of the benzene C H bond with bis(pinacolato)diboron. Molecular structures of most of the new complexes in this study were determined by a single‐crystal X‐ray analysis.  相似文献   

16.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

17.
A functionalized deoxyribonucleic acid (Cz‐DNA) was prepared with carbazolyl ammonium lipid as a triplet host material for phosphorescent material system. It is soluble in organic solvents, which facilitates the sample preparation for the absorption and luminescent properties in solid states. A highly soluble iridium complex, Ir(Cz‐ppy)3 with carbazolyl‐substituted 2‐phenylpyridine ligands was employed for studying the phosphorescence in Cz‐DNA. There is a good overlap between the photoluminescence spectrum of Cz‐DNA and the metal‐to‐ligand charge transfer (MLCT) absorption bands of the iridium complex. This overlap enables efficient energy transfer from the excited state in the host to the MLCT band of Ir(Cz‐ppy)3. In addition, photoluminescence quantum yield of Cz‐DNA was found to be relatively larger than the copolymer (PCzSt) with vinylcarbazole and styrene. Thus, Cz‐DNA was employed as a triplet host material for fabricating multilayered electrophosphorescence devices via modification of its property by doping 5,4‐tert‐butylhexyl‐1,3,4‐oxadiazole (PBD). After doping 30 wt % PBD and 10 wt % Ir(Cz‐ppy)3 into Cz‐DNA, we achieved much improvement in electron injection/transport from an adjacent carrier transport layer, resulting in much improved device performances. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1913–1918, 2010  相似文献   

18.
With the target to design and develop new functionalized green triplet light emitters that possess distinctive electronic properties for robust and highly efficient phosphorescent organic light‐emitting diodes (PHOLEDs), a series of bluish–green to yellow–green phosphorescent tris‐cyclometalated homoleptic iridium(III) complexes [Ir(ppy‐X)3] (X=SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph, Hppy=2‐phenylpyridine) have been synthesized and fully characterized by spectroscopic, redox, and photophysical methods. By chemically manipulating the lowest triplet‐state character of Ir(ppy)3 with some functional main‐group 14–16 moieties on the phenyl ring of ppy, a new family of metallophosphors with high‐emission quantum yields, short triplet‐state lifetimes, and good hole‐injection/hole‐transporting or electron‐injection/electron‐transporting properties can be obtained. Remarkably, all of these IrIII complexes show outstanding electrophosphorescent performance in multilayer doped devices that surpass that of the state‐of‐the‐art green‐emitting dopant Ir(ppy)3. The devices described herein can reach the maximum external quantum efficiency (ηext) of 12.3 %, luminance efficiency (ηL) of 50.8 cd A?1, power efficiency (ηp) of 36.9 Lm W?1 for [Ir(ppy‐SiPh3)3], 13.9 %, 60.8 cd A?1, 49.1 Lm W?1 for [Ir(ppy‐NPh2)3], and 10.1 %, 37.6 cd A?1, 26.1 Lm W?1 for [Ir(ppy‐SO2Ph)3]. These results provide a completely new and effective strategy for carrier injection into the electrophosphor to afford high‐performance PHOLEDs suitable for various display applications.  相似文献   

19.
A set of novel greenish‐yellow‐, yellow‐, and orange‐light‐emitting polymeric iridium(III) complexes were synthesized with the bridge‐splitting method. The respective dimeric precursor complexes, [Ir(ppy)2‐μ‐Cl]2 (ppy = 2‐phenylpyridine) and [Ir(ppy? CHO)2‐μ‐Cl]2 [ppy? CHO = 4‐(2‐pyridyl)benzaldehyde], were coordinated to 2,2′‐bipyridine carrying poly(ε‐caprolactone) tails. The resulting emissive polymers were characterized with one‐dimensional (1H) and two‐dimensional (1H? 1H correlation spectroscopy) nuclear magnetic resonance and infrared spectroscopy, gel permeation chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and the successful coordination of the iridium(III) centers to the 2,2′‐bipyridine macroligand was revealed. The thermal behavior was studied with differential scanning calorimetry and correlated with atomic force microscopy. Furthermore, the quantitative coordination was verified by both the photophysical and electrochemical properties of the mononuclear iridium(III) compounds. The photoluminescence spectra showed strong emissions at 535 and 570 nm. The color shifts depended on the substituents of the cyclometallating ligands. Cyclic voltammetry gave oxidation potentials of 1.23 V and 1.46 V. Upon the excitation of the films at 365 nm, yellow light was observed, and this could allow potential applications in light‐emitting devices. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2765–2776, 2005  相似文献   

20.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号