首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein–protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd‐catalyzed cross‐coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported.  相似文献   

2.
A promising strategy for mediating protein–protein interactions is the use of non‐peptidic mimics of secondary structural protein elements, such as the α‐helix. Recent work has expanded the scope of this approach by providing proof‐of‐principle scaffolds that are conformationally biased to mimic the projection of side‐chains from one face of another common secondary structural element—the β‐strand. Herein, we present a synthetic route that has key advantages over previous work: monomers bearing an amino acid side‐chain were pre‐formed before rapid assembly to peptidomimetics through a modular, iterative strategy. The resultant oligomers of alternating pyridyl and six‐membered cyclic ureas accurately reproduce a recognition domain of several amino acid residues of a β‐strand, demonstrated herein by mimicry of the i, i+2, i+4 and i+6 residues.  相似文献   

3.
A convenient and efficient procedure for the synthesis of α‐amino phosphonates by a one‐pot, three‐component condensation of aldehydes, amine, and diethyl phosphite in the presence of xanthan sulfuric acid as a bio‐supported catalyst under solvent‐free conditions has been developed. A wide range of α‐amino phosphonates have been obtained in high to excellent yields. Furthermore, the catalyst can be recovered simply and reused several times in subsequent reactions.  相似文献   

4.
The organocatalytic activation of Morita–Baylis–Hillman alcohols via H‐bonding‐iminium‐ion formation is demonstrated for the first time. This activation strategy enables the Morita‐Baylis–Hillman alcohols to undergo a formal SN2′ reaction. In combination with the well‐established enamine reactivity, this creates a new reactivity pattern. The application of this new activation mode for the synthesis of bicyclic α‐alkylidene‐ketones is demonstrated. The developed reaction sequence proceeds efficiently affording nature‐inspired target products with four contiguous stereogenic centers in a highly stereoselective manner.  相似文献   

5.
Helix‐constrained polypeptides have attracted great interest for modulating protein–protein interactions (PPI). It is not known which are the most effective helix‐inducing strategies for designing PPI agonists/antagonists. Cyclization linkers (X1–X5) were compared here, using circular dichroism and 2D NMR spectroscopy, for α‐helix induction in simple model pentapeptides, Ac‐cyclo(1,5)‐[X1‐Ala‐Ala‐Ala‐X5]‐NH2, in water. In this very stringent test of helix induction, a Lys1→Asp5 lactam linker conferred greatest α‐helicity, hydrocarbon and triazole linkers induced a mix of α‐ and 310‐helicity, while thio‐ and dithioether linkers produced less helicity. The lactam‐linked cyclic pentapeptide was also the most effective α‐helix nucleator attached to a 13‐residue model peptide.  相似文献   

6.
The total synthesis of the human telomerase inhibitor γ‐rubromycin in its racemic form was accomplished in 3.8 % overall yield. The key feature of this synthesis is an efficient acid‐catalyzed spiroketalization for the construction of the spiroketal core. The required electronically well‐balanced spiroketal precursor was obtained by the convergent assembly of a naphthyl‐substituted aldehyde, an α‐methoxyallyl‐γ‐silyl‐substituted phosphonate as the central C3 building block, and a highly functionalized aryl Grignard reagent. Another key feature is the late‐stage construction of the isocoumarin moiety and a simultaneous protodesilylation furnishing the known methyl aryl ether protected precursor of γ‐rubromycin.  相似文献   

7.
Herein we report on the umpolung of Morita–Baylis–Hillman type intermediates and application to the α‐functionalization of enone C?H bonds. This reaction gives direct access to α‐chloro‐enones, 1,2‐diketones and α‐tosyloxy‐enones. The latter are important intermediates for cross‐coupling reaction and, to the best of our knowledge, cannot be made in a single step from enones in any other way. The proposed mechanism is supported by spectroscopic studies. The key initial step involves conjugate attack of an amine (DABCO or pyridine), likely assisted by hypervalent iodine acting as a Lewis acid leading to formation of an electrophilic β‐ammonium‐enolonium species. Nucleophilic attack by acetate, tosylate, or chloride anion is followed by base induced elimination of the ammonium species to give the noted products. Hydrolysis of α‐acetoxy‐enones lead to formation of 1,2‐diketones. The α‐tosyl‐enones participate in Negishi coupling reactions under standard conditions.  相似文献   

8.
Inhibition of protein–protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α‐Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed “proteomimetics”, which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N‐alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.  相似文献   

9.
α‐Amino phosphonic acid derivatives are considered to be the most important structural analogues of α‐amino acids and have a very wide range of applications. However, approaches for the catalytic asymmetric synthesis of such useful compounds are very limited. In this work, simple, efficient, and versatile organocatalytic asymmetric 1,2‐addition reactions of α‐isothiocyanato phosphonate were developed. Through these processes, derivatives of β‐hydroxy‐α‐amino phosphonic acid and α,β‐diamino phosphonic acid, as well as highly functionalized phosphonate‐substituted spirooxindole, can be efficiently constructed (up to 99 % yield, d.r. >20:1, and >99 % ee). This novel method provides a new route for the enantioselective functionalization of α‐phosphonic acid derivatives.  相似文献   

10.
The polystyrene‐supported α‐selenoacetic acid and α‐selenopropionic acid were prepared and used for the synthesis of 2‐alkenamides from primary and secondary amines in good yields and high purities.  相似文献   

11.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

12.
The synthesis of α‐pyrazolylglycine derivatives(7a‐d) with different substituents, starting from glycine have been pre pared. The spectroscopy of intermediate compounds and the final amino acids have been discussed.  相似文献   

13.
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors.  相似文献   

14.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

15.
The bioactive Kopsia alkaloids lundurines A–D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (?)‐lundurine A has previously been achieved through a Simmons–Smith cyclopropanation strategy. Here, the total synthesis of (?)‐lundurine A was carried out using a metal‐catalyzed diazo cyclopropanation strategy. In order to avoid a carbene C?H insertion side reaction during cyclopropanation of α‐diazo‐ carboxylates or cyanides, a one‐pot, copper‐catalyzed Bamford–Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7.  相似文献   

16.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

17.
Pauling and Corey proposed a pleated‐sheet configuration, now called α‐sheet, as one of the protein secondary structures in addition to α‐helix and β‐sheet. Recently, it has been suggested that α‐sheet is a common feature of amyloidogenic intermediates. We have investigated the stability of antiparallel β‐sheet and two conformations of α‐sheet in solution phase using the density functional theoretical method. The peptides are modeled as two‐strand acetyl‐(Ala)2N‐methylamine. Using stages of geometry optimization and single point energy calculation at B3LYP/cc‐pVTZ//B3LYP/6‐31G* level and including zero‐point energies, thermal, and entropic contribution, we have found that β‐sheet is the most stable conformation, while the α‐sheet proposed by Pauling and Corey has 13.6 kcal/mol higher free energy than the β‐sheet. The α‐sheet that resembles the structure observed in molecular dynamics simulations of amyloidogenic proteins at low pH becomes distorted after stages of geometry optimization in solution. Whether the α‐sheets with longer chains would be increasingly favorable in water relative to the increase in internal energy of the chain needs further investigation. Different from the quantum mechanics results, AMBER parm94 force field gives small difference in solution phase energy between α‐sheet and β‐sheet. The predicted amide I IR spectra of α‐sheet shows the main band at higher frequency than β‐sheet. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

19.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

20.
The stereocontrolled total synthesis of the originally proposed ( 1 ) and correct ( 2 ) structures of (+)‐neopeltolide, a novel marine macrolide natural product with highly potent antiproliferative activity against several cancer cell lines as well as potent antifungal activity, has been achieved by exploiting a newly developed Suzuki–Miyaura coupling/ring‐closing metathesis strategy. Alkylborate 44 , which was generated in situ from iodide 34 , was coupled with enol phosphate 8 by a Suzuki–Miyaura coupling. Ring‐closing metathesis of the derived diene 45 followed by stereoselective hydrogenation afforded tetrahydropyran 47 as a single stereoisomer in high overall yield from 34 . Our convergent strategy enabled us to construct the 14‐membered macrolactone core structure of 2 in a rapid and efficient manner. Total synthesis and biological evaluation of synthetic intermediates and designed synthetic analogues, performed to establish the structure–activity relationships of 2 , led to the discovery of a structurally simple yet potent cytotoxic analogue, 9‐demethylneopeltolide ( 54 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号