首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
魏荣宝  张大为  梁娅  卢俊瑞  李红姬 《有机化学》2008,28(10):1663-1675
1955年Edward 首次发现吡喃糖C(1)位的电负性强的取代基处于a键上, 随后被Lemieux和Chü定义为异头效应. 它是有机化学中最重要的立体电子效应之一, 通常存在于有Lp-X-A-Y结构单元的分子中, 其中X是带有孤对电子的电负性强的元素, A是一般元素, Y 也是电负性强的元素, Lp是X的孤对电子, 其轨道与A—Y键反平行. 异头效应对分子的结构和反应活性有重要影响. 综述了各类化合物中存在的异头效应、广义异头效应、反异头效应及在有机化学中的应用.  相似文献   

2.
Molecular mimicry is an essential part of the development of drugs and molecular probes. In the chemical glycobiology field, although many glycomimetics have been developed in the past years, it has been considered that many failures in their use are related to the lack of the anomeric effects in these analogues. Additionally, the origin of the anomeric effects is still the subject of virulent scientific debates. Herein, by combining chemical synthesis, NMR methods, and theoretical calculations, we show that it is possible to restore the anomeric effect for an acetal when replacing one of the oxygen atoms by a CF2 group. This result provides key findings in chemical sciences. On the one hand, it strongly suggests the key relevance of the stereoelectronic component of the anomeric effect. On the other hand, the CF2 analogue adopts the natural glycoside conformation, which might provide new avenues for sugar‐based drug design.  相似文献   

3.
4.
The structural weights of the canonical resonance contributors used in the Two‐state valence‐bond charge‐transfer model, neutral (N, R1) and ionic (VB‐CT, R2), to the ground states and excited states of a series of linear dipolar intramolecular charge‐transfer chromophores containing a buta‐1,3‐dien‐1,4‐diyl bridge have been computed by using the block‐localized wavefunction (BLW) method at the B3LYP/6‐311+G(d) level to provide the first quantitative assessment of this simple model. Ground‐ and excited‐state analysis reveals surprisingly low ground‐state structural weights for the VB‐CT resonance form using either this Two‐state model or an expanded Ten‐state model. The VB‐CT state is found to be more prominent in the excited state. Individual resonance forms were structurally optimized to understand the origins of the bond length alternation (BLA) of the bridging unit. Using a Wheland energy‐based weighting scheme, the weighted average of the optimized bond lengths with the Two‐state model was unable to reproduce the BLA features with values 0.04 to 0.02 Å too large compared to the fully delocalized (FD) structure (BLW: ca. ?0.13 to ?0.07 Å, FD: ca. ?0.09 to ?0.05 Å). Instead, an expanded Ten‐state model fit the BLA values of the FD structure to within only 0.001 Å of FD.  相似文献   

5.
6.
Recently, Braunschweig et al. found that borylene (CAAC)DurB, in which CAAC is a cyclic alkyl(amino) carbene and Dur refers to 2,3,5,6-tetramethylphenyl, can bind and activate N2, and the resulting [(CAAC)DurB]2N2 is of a bent BNNB core. The N2 ligand in transition metal complexes is generally linear, so herein, the bonding nature of both terminal end-on and end-on bridging borylene-N2 complexes is investigated with valence bond (VB) theory. In the terminal end-on (CAAC)HBN2 the bonding follows the mechanism in transition metals with a σ donation and a π back-donation, but in the end-on bridging borylene-N2 complex, the σ donation comes from the π orbitals of N2, and thus, there are two opposite and perpendicular push–pull channels. It is the push–pull interaction that governs the enhanced activation of N2 and the BNNB bent geometry. It is expected that the substituents bonded to B can modulate the bent angle and the strength of the push–pull interaction. Indeed, (CAAC)FB exhibits enhanced catalytic capacity for the activation of N2.  相似文献   

7.
8.
The physicochemical properties of polyalkylthiophenes with various side‐chain length were widely investigated in order to reveal the functions of alkyl side‐chains in these polymers. The effects of the side‐chains on the properties of polyalkylthiophenes can be explained by their steric hindrance and mobility. The steric hindrance of alkyl chain affected not only the polymerization mechanism of the monomers but also the redox potential, interchain distance, charge transport properties, and film morphology. The mobility of the side‐chain influences the rate of dedoping, heat of transitions of polymers. The structure regio‐regularity, stability of polarons/bipolarons, film morphologies, and interchain interactions determine the optical and electric properties of polyalkylthiophenes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1763–1772, 1999  相似文献   

9.
10.
11.
12.
13.
The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range C? H residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown‐chair forms, of which the preferred conformation has the methyl group in an equatorial orientation.  相似文献   

14.
1,1,1,2,2,4,4,5,5,5‐Decafluoro‐3‐phenyl‐3‐pentanol was prepared by a Cannizzaro‐type disproportionation reaction, and the dimetallated compound was used as a bidentate ligand, which is bulkier than the Martin ligand (1,1,1,3,3,3‐hexafluoro‐2‐phenyl‐2‐propanol). A P? H spirophosphorane was synthesized by utilizing the new bidentate ligand, and the structure of the product was essentially the same as that of the P? H phosphorane with Martin ligands. Phosphoranes that exhibit reversed apicophilicity (O‐equatorial) were also synthesized and could be converted into the corresponding stable stereoisomers (O‐apical). The crystal structures of O‐equatorial phosphoranes and the O‐apical isomers were slightly affected by the steric repulsion of pentafluoroethyl groups. Kinetic measurements revealed that the stereomutation of O‐equatorial methylphosphorane to the O‐apical isomer was slowed. The activation enthalpy for the stereomutation of the former to the latter was higher than that of the phosphorane with Martin ligands by 5.1 kcal mol?1.  相似文献   

15.
Conformational analyses of the P(3)‐axially and P(3)‐equatorially F‐substituted (±)‐cis‐ and (±)‐trans‐2,4‐dioxa‐7‐aza‐3‐phosphadecalin 3‐oxides (3‐fluoro‐2,4‐dioxa‐7‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides) were performed. The results are based on independent studies in both solution and the solid state by 1H‐ and 31P‐NMR experiments and computational and X‐ray crystallographic data. As expected, the axial epimers adopt neat double‐chair conformations in solution and in the crystal. Due to the anomeric effect of the electron withdrawing F‐substituent, the 2,4‐dioxa‐3‐phospha moiety in the equatorial epimers adopts a mixture of conformations in solution, mainly chair and twist‐boat; whereas a neat twist‐boat (trans‐isomer) and the unusual envelope conformation (cis‐isomer) were detected in the solid state. This is the first report of a straight visualization of these conformations and the impact of the anomeric effect in such systems.  相似文献   

16.
Conformational analysis of 20 neolignans was performed to determine the most probable conformer that may fit the receptor. The molecular mechanics method (MM2) was employed to construct conformational maps in both a vacuum and a biological environment. Boltzmann's distribution among several local minima was calculated. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 712–721, 1997  相似文献   

17.
Theoretical calculation has been carried out for the nucleophilic displacement reaction of 1,2‐dichloroethane catalyzed by haloalkane dehalogenase. The results indicate that different hydrogen bond patterns of the oxyanion hole and the halide‐stabilizing residues play an important role in the dehalogenation reaction. They cause concertedly an earlier transition state (TS) with the activation barrier of 16.60 kcal/mol. The stabilization effect of Trp125 and Trp175 on chlorine atom in the TS is larger than that of the reactant complex by 15.67 kcal/mol so that, they make contribution to the stabilization of the TS. Moreover, the reaction shows the enzymatic action can be attributed to a combination of reactant‐state destabilization and transition‐state electrostatic stabilization. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
We showed that imidoyl- and phosphaethenyl(alkali metals) would thermodynamically prefer the Z-configuration. The bond model analysis of the electronic structures showed that the Z-preference should originate from 1,2-metallobridging by the delocalization of lone pairs on N or P to vacant p-orbitals of the alkali metals and from the antiperiplanar effect of the delocalization from σ C—M to σ? N(P)—R 2 and from n N(P) to the C—R1. The Z-preference increases by more electron-withdrawing groups at the carbon atom of the double bond. However, substitution at the nitrogen/phosphorus results in E-preference because of 1,4-chelation of the lone pair of the substituents to alkali metals. Most of halogen derivatives were not stable and eliminate metal halides.  相似文献   

19.
Summary: Polystyrene‐block‐poly(ethylene oxide) (SEO) block copolymer thin films, in which CdS clusters have been sequestered into the PEO domains of the SEO block copolymers, are found to induce the morphological transformation of PEO from cylinders to spheres, as shown by using atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This transformation is caused by the presence of hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO, as confirmed by nuclear magnetic resonance (NMR) studies.

Morphological transformation of PEO cylinders into CdS/PEO spheres by hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO.  相似文献   


20.
4,4-Diphenyl-2,5-cyclohexadienone (1) crystallized as four conformational polymorphs and a record number of 19 crystallographically independent molecules have been characterized by low-temperature X-ray diffraction: form A (P2(1), Z'=1), form B (P1, Z'=4), form C (P1, Z'=12), and form D (Pbca, Z'=2). We have now confirmed by variable-temperature powder X-ray diffraction that form A is the thermodynamic polymorph and B is the kinetic form of the enantiotropic system A-D. Differences in the packing of the molecules in these polymorphs result from different acidic C-H donors approaching the C=O acceptor in C-H...O chains and in synthons I-III, depending on the molecular conformation. The strength of the C-HO interaction in a particular structure correlates with the number of symmetry-independent conformations (Z') in that polymorph, that is, a short C-HO interaction leads to a high Z' value. Molecular conformation (Econf) and lattice energy (Ulatt) contributions compensate each other in crystal structures A, B, and D resulting in very similar total energies: Etotal of the stable form A=1.22 kcal mol(-1), the metastable form B=1.49 kcal mol(-1), and form D=1.98 kcal mol(-1). Disappeared polymorph C is postulated as a high-Z', high-energy precursor of kinetic form B. Thermodynamic form A matches with the third lowest energy frame based on the value of Ulatt determined in the crystal structure prediction (Cerius2, COMPASS) by full-body minimization. Re-ranking the calculated frames on consideration of both Econf (Spartan 04) and Ulatt energies gives a perfect match of frame #1 with stable structure A. Diphenylquinone 1 is an experimental benchmark used to validate accurate crystal structure energies of the kinetic and thermodynamic polymorphs separated by <0.3 kcal mol(-1) (approximately 1.3 kJ mol(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号