首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The first total synthesis of (+)‐neomarinone has been achieved by following a concise and convergent route using methyl (R)‐lactate and (R)‐3‐methylcyclohexanone as chiral building blocks. Key steps of the synthesis are the stereocontrolled formation of the two quaternary stereocenters by diastereoselective 1,4‐conjugate addition and enolate alkylation reactions, and the construction of the furanonaphthoquinone skeleton by regioselective Diels–Alder reaction between a 1,3‐bis(trimethylsilyloxy)‐1,3‐diene and a bromoquinone. The synthesis proves the relative and absolute stereochemistry of natural neomarinone.  相似文献   

4.
5.
In this article, the total syntheses of antimalarial compound decursivine and its biologically inactive sibling serotobenine are presented. The biomimetic synthesis of (±)‐serotobenine was investigated first, but failed. During the subsequent investigation of other synthetic routes, we discovered a new cascade Witkop photocyclization/elimination/addition sequence, which enabled the expedient synthesis of not only racemic decursivine and serotobenine, but also enantiopure (+)‐ and (?)‐decursivine and a variety of their analogues. The present syntheses represent the shortest pathway for the total synthesis of decursivine and serotobenine to date. Moreover, the newly developed cascade sequence for the total synthesis of decursivine does not need any protecting steps. The scope and the reaction mechanism of the cascade sequence were also studied. A rational mechanism for the cascade sequence is proposed, which is consistent with the previous studies and our current experimental results.  相似文献   

6.
Described herein is the first asymmetric total synthesis of (+)‐harringtonolide, a natural diterpenoid with an unusual tropone imbedded in a cagelike framework. The key transformations include an intramolecular Diels–Alder reaction and a rhodium‐complex‐catalyzed intramolecular [3+2] cycloaddition to install the tetracyclic core as well as a highly efficient tropone formation.  相似文献   

7.
8.
The asymmetric total synthesis of natural azasugars (+)‐castanospermine, (+)‐7‐deoxy‐6‐epi‐castanospermine, and synthetic (+)‐1‐epi‐castanospermine has been accomplished in nine to ten steps from a common chiral building block (S)‐ 8 . The method features a powerful chiral relay strategy consisting of a highly diastereoselective vinylogous Mukaiyama‐type reaction with either chiral or achiral aldehydes (≥95 % de; de=diastereomeric excess) and a diastereodivergent reduction of tetramic acids, which allows formation of three continuous stereogenic centers with high diastereoselectivities. The method also provides a flexible access to structural arrays of 5‐(α‐hydroxyalkyl)tetramic acids, such as 17/34 , and 5‐(α‐hydroxyalkyl)‐4‐hydroxyl‐2‐pyrrolidinones, such as 18 and 25/35 a . The method constitutes the first realization of the challenging chiral synthons A and D and thus of the conceptually attractive retrosynthetic analysis shown in Scheme 1 in a highly enantioselective manner.  相似文献   

9.
An enantioselective total synthesis of the natural (+)‐linoxepin ( 1 ) was accomplished in eleven steps from bromovanin ( 24 ). Key steps are a domino carbopalladation/ Mizoroki–Heck reaction with the formation of a pentacyclic system, an asymmetric hydroboration as well as an oxidative lactonization.  相似文献   

10.
The ophiobolin sesterterpenes are notable plant pathogens which have recently elicited significant chemical and biological attention because of their intriguing carbogenic frameworks, reactive functionalities, and emerging anticancer profiles. Reported herein is a total synthesis of (+)‐6‐epi‐ophiobolin A in 14 steps, a task which addresses construction of the synthetically challenging spirocyclic tetrahydrofuran motif as well as several other key stereochemical problems. This work demonstrates a streamlined synthetic platform to complex ophiobolins leveraging disparate termination modes of a radical polycyclization cascade for divergent elaboration and functionalization.  相似文献   

11.
12.
An enantioselective total synthesis of trioxacarcin DC‐45‐A2 ( 1 ) featuring a novel Lewis acid‐induced cascade rearrangement of epoxyketone 6 to forge the polyoxygenated 2,7‐dioxabicyclo[2.2.1]heptane core of the molecule is described.  相似文献   

13.
Two enantioselective total syntheses of the nortriterpenoid natural product rubriflordilactone A are described, which use palladium‐ or cobalt‐catalyzed cyclizations to form the CDE rings, and converge on a late‐stage synthetic intermediate. These key processes are set up through the convergent coupling of a common diyne component with appropriate AB‐ring aldehydes, a strategy that sets the stage for the synthetic exploration of other members of this family of natural products.  相似文献   

14.
The first enantioselective total synthesis of (+)‐steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh‐catalyzed O?H bond insertion followed by an intramolecular carbonyl‐ene reaction, two sequential SmI2‐mediated Ueno–Stork and ketyl–olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro‐aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)‐steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis.  相似文献   

15.
16.
A new method for the preparation of quaternary chiral aminals has been developed that employs an enamide‐type Overman rearrangement process. This methodology was applied to enantioselective total syntheses of (+)‐dibromophakellin and (+)‐dibromophakellstatin.  相似文献   

17.
(+)‐Ryanodine ( 1 ) is the ester derivative of 1H‐pyrrole‐2‐carboxylic acid and the complex terpenoid (+)‐ryanodol ( 2 ), which possesses eleven contiguous stereogenic centers on the ABCDE‐ring system. Compound 1 is known to be a potent modulator of intracellular calcium release channels, whereas the activity of 2 is significantly weaker. To chemically construct 1 , the multiple oxygen functional groups must be installed on the fused pentacycle in stereoselective fashions and the extremely hindered C3‐hydroxy group must be acylated in a site‐selective manner. First, the total synthesis of 2 was accomplished by introducing the five stereocenters from the previously prepared enantiopure ABDE‐ring 7 . Stereoselective construction of the C3‐secondary, C2‐ and C6‐tertiary alcohols was achieved by three nucleophilic reactions. The C9‐ and C10‐trisubstituted carbon centers were regio‐ and stereoselectively introduced by hydroboration/oxidation of the six‐membered C‐ring, which was formed by the ring‐closing metathesis reaction. Direct esterification of the C3‐alcohol with pyrrole‐2‐carboxylic acid proved unsuccessful; therefore, we developed a new, two‐step protocol for attachment of the pyrrole moiety. The C3‐hydroxy group was first converted into the less sterically cumbersome glycine ester, which was then transformed into the pyrrole ring through condensation with 1,3‐bis(dimethylamino)allylium tetrafluoroborate. This procedure resulted in the first total synthesis of 1 .  相似文献   

18.
Herein, we describe the first total synthesis of (+)‐cornexistin as well as its 8‐epi‐isomer starting from malic acid. The robust and scalable route features a Nozaki–Hiyama–Kishi reaction, an auxiliary‐controlled syn‐Evans‐aldol reaction, and a highly efficient intramolecular alkylation to form the nine‐membered carbocycle. The delicate maleic anhydride moiety of the nonadride skeleton was constructed from a β‐keto nitrile. The developed route enabled the synthesis of 165 mg (+)‐cornexistin.  相似文献   

19.
The first enantiospecific total synthesis of the antibacterial natural product (+)‐pleuromutilin has been achieved. The approach includes the synthesis of a non‐racemic cyclisation substrate from (+)‐trans‐dihydrocarvone, a highly selective SmI2‐mediated cyclisation cascade, an electron transfer reduction of a hindered ester, and the first efficient conversion of (+)‐mutilin to the target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号