首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Subporphyrinatoboron(III) (SubB) sensitizers were synthesized for use in dye‐sensitized solar cells (DSSCs). The prototype, which comprises a sterically demanding 3,5‐di‐tert‐butylphenyl scaffold, a meso‐ethynylphenyl spacer, and a cyanoacrylic acid anchoring group, achieved an open‐circuit voltage VOC of 836 mV, short‐circuit current density JSC of 15.3 mA cm?2, fill factor of 0.786, and a photon‐to‐current conversion efficiency of 10.1 %. Such astonishing figures suggest that a bright future lies ahead for SubB in the realm of DSSCs.  相似文献   

2.
The synthesis of four alternating copolymers using benzo[2,1‐b;3,4‐b′]dithiophene (BDP) as the common donor unit is presented. Before the synthesis, theoretical calculations that we performed predicted that the incorporation of BDP, which consists of fused dithiophene units with a benzene ring, into these polymers would produce a low‐lying highest occupied molecular orbital (HOMO) energy level. Low‐lying HOMO levels are desirable to produce high open circuit voltages (VOC) in organic bulk heterojunction (BHJ) photovoltaic devices. The polymers' structural characterization, as well as the preliminary results of their performance in BHJ devices, using (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The initial power conversion efficiency achieved in these unoptimized devices was 1.11% because of relatively low JSC values. The variation observed in the JSC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

4.
Zn‐doped anatase TiO2 nanoparticles are synthesized by a one‐step hydrothermal method. Detailed electrochemical measurements are undertaken to investigate the origin of the effect of Zn doping on the performance of dye‐sensitized solar cells (DSSCs). It is found that incorporation of Zn2+ into an anatase lattice elevates the edge of the conduction band (CB) of the photoanodes and the Fermi level is shifted toward the CB edge, which contributes to the improvement in open‐circuit voltage (VOC). Charge‐density plots across the cell voltage further confirm the increase in the CB edge in DSSCs directly. Photocurrent and transient photovoltage measurements are employed to study transport and recombination dynamics. The electron recombination is accelerated at higher voltages close to the CB edge, thus leading to a negative effect on the VOC.  相似文献   

5.
Dye‐sensitized solar cells (DSSCs) based on CuII/I bipyridyl or phenanthroline complexes as redox shuttles have achieved very high open‐circuit voltages (VOC, more than 1 V). However, their short‐circuit photocurrent density (JSC) has remained modest. Increasing the JSC is expected to extend the spectral response of sensitizers to the red or NIR region while maintaining efficient electron injection in the mesoscopic TiO2 film and fast regeneration by the CuI complex. Herein, we report two new D‐A‐π‐A‐featured sensitizers termed HY63 and HY64 , which employ benzothiadiazole (BT) or phenanthrene‐fused‐quinoxaline (PFQ), respectively, as the auxiliary electron‐withdrawing acceptor moiety. Despite their very similar energy levels and absorption onsets, HY64 ‐based DSSCs outperform their HY63 counterparts, achieving a power conversion efficiency (PCE) of 12.5 %. PFQ is superior to BT in reducing charge recombination resulting in the near‐quantitative collection of photogenerated charge carriers.  相似文献   

6.
We designed and synthesized a series of novel electron‐accepting zinc(II)phthalocyanines (ZnPc) and probed them in p‐type dye sensitized solar cells (p‐DSSCs) by using CuO as photocathodes. By realizing the right balance between interfacial charge separation and charge recombination, optimized fill factors (FFs) of 0.43 were obtained. With a control over fill factors in p‐DSSCs in hand we turned our attemtion to t‐DSSCs, in which we combined for the first time CuO‐based p‐DSSCs with TiO2‐based n‐DSSCs using ZnPc and N719. In the resulting t‐DSSCs, the VOC of 0.86 V is the sum of those found in p‐ and n‐DSSCs, while the FF remains around 0.63. It is only the smaller Jscs in t‐DSSCs that limits the efficiency to 0.69 %.  相似文献   

7.
An electrolyte based on the tris(acetylacetonato)iron(III)/(II) redox couple ([Fe(acac)3]0/1?) was developed for p‐type dye‐sensitized solar cells (DSSCs). Introduction of a NiO blocking layer on the working electrode and the use of chenodeoxycholic acid in the electrolyte enhanced device performance by improving the photocurrent. Devices containing [Fe(acac)3]0/1? and a perylene–thiophene–triphenylamine sensitizer (PMI–6T–TPA) have the highest reported short‐circuit current (JSC=7.65 mA cm?2), and energy conversion efficiency (2.51 %) for p‐type DSSCs coupled with a fill factor of 0.51 and an open‐circuit voltage VOC=645 mV. Measurement of the kinetics of dye regeneration by the redox mediator revealed that the process is diffusion limited as the dye‐regeneration rate constant (1.7×108 M ?1 s?1) is very close to the maximum theoretical rate constant of 3.3×108 M ?1 s?1. Consequently, a very high dye‐regeneration yield (>99 %) could be calculated for these devices.  相似文献   

8.
A new donor‐acceptor copolymer, containing benzodithiophene (BDT) and methyl thiophene‐3‐carboxylate (3MT) units, is designed and synthesized for polymer solar cells (PSCs). The 3MT unit is used as an electron acceptor unit in this copolymer to provide a lower highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open‐circuit voltage (VOC). The resulting bulk heterojunction PSC made of the copolymer and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits a power conversion efficiency (PCE) up to 4.52%, a short circuit current (JSC) of 10.5 mA·cm‐2, and a VOC of 0.86 V.  相似文献   

9.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

10.
Three designed metal‐free dyes based on 3‐(10‐butyl‐8‐(methylthio)‐10H‐phenothiazin‐3‐yl)‐2‐cyanoacrylic acid (V5) are investigated by density functional theory (DFT) and time‐dependent DFT to improve the efficiency of V5‐based solar cell devices. We have studied the geometrical structures, excitations, electronic structures, and conduction band shift caused by dye adsorption. The results indicate that the designed dyes have several merits compared with V5 including: (i) smaller energy band gaps and the LUMO closer to conduction band of TiO2; (ii) wider absorption spectra and higher oscillator strength; (iii) larger dipole moment that lead to higher Voc value. Our work suggests that the modification of π‐bridge with diketopyrrolopyrrole unit is very effective for designing novel metal‐free dyes with improved performance for dye‐sensitized solar cells (DSSCs). These findings are expected to provide a bright way to design new efficient metal‐free organic DSSCs. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Three novel dyes of JJ1 , JJ2 , and JJ6 featured zinc porphyrin as a basic core structure; N, N‐alkyl‐4‐(prop‐1‐yn‐1‐yl)aniline as an electron donor linked to meso‐10‐position; 4‐(prop‐1‐yn‐1‐yl)benzoic acid as an electron acceptor linked to meso‐20‐position; and 2,6‐bis(dodecyloxy)phenyl or 2,6‐bis(octyloxy)phenyl respectively linked to meso‐5 and meso‐15‐positions of zinc porphyrin have been synthesized and used for dye‐sensitized solar cells. Porphyrin JJ6 featured the shortest alkyl group (─C4H9) on the donor, whereas JJ2 contained the longest alkyl groups (─C12H25), and JJ1 has a medium length of octyl groups. With these new porphyrin sensitizers, we observed that JJ6 has 7.55% power conversion efficiency under simulated one‐sun illumination (AM 1.5 G, 100 mW/cm2) with JSC = 18.64 mA/cm2, VOC = 0.66 V, and fill factor (FF) = 0.61, which was higher than the other two; JJ1 (7.35%) with JSC = 18.83 mA/cm2, VOC = 0.68 V, and FF = 0.60; and JJ2 (6.33%) with JSC = 15.69 mA/cm2, VOC = 0.62 V, and FF = 0.65. The power conversion efficiency of JJ6 and JJ1 were higher than JJ2 , demonstrating that the lengthy alkyl groups on the aniline cause a decrease in efficiency of the devices.  相似文献   

12.
13.
A photoelectrochemical (PEC) cell consisting of an n‐type CdS single‐crystal electrode and a Pt counter electrode with the ruthenium–2,2′‐bipyridine complex [Ru(bpy)3]2+/3+ as the redox shuttle in a non‐aqueous electrolyte was studied to obtain a higher open‐circuit voltage (VOC) than the onset voltage for water splitting. A VOC of 1.48 V and a short‐circuit current (ISC) of 3.88 mA cm?2 were obtained under irradiation by a 300 W Xe lamp with 420–800 nm visible light. This relatively high voltage was presumably due to the difference between the Fermi level of photo‐irradiated n‐type CdS and the redox potential of the Ru complex at the Pt electrode. The smooth redox reaction of the Ru complex with one‐electron transfer was thought to have contributed to the high VOC and ISC. The obtained VOC was more than the onset voltage of water electrolysis for hydrogen and oxygen generation, suggesting prospects for application in water electrolysis.  相似文献   

14.
Panchromatic RuII sensitizers TF‐30–TF‐33 bearing a new class of 6‐quinolin‐8‐yl‐2,2′‐bipyridine anchor were synthesized and tested under AM1.5 G simulated solar irradiation. Their increased π conjugation relative to that of the traditional 2,2′:6′,2′′‐terpyridine‐based anchor led to a remarkable improvement in absorptivity across the whole UV–Vis–NIR spectral regime. Furthermore, the introduction of a bulky tert‐butyl substituent on the quinolinyl fragment not only led to an increase in the JSC value owing to the suppression of dye aggregation, but remarkably also resulted in no loss in VOC in comparison with the reference sensitizer containing a tricarboxyterpyridine anchor. The champion sensitizer in DSC devices was found to be TF‐32 with a performance of JSC=19.2 mA cm?2, VOC=740 mV, FF=0.72, and η=10.19 %. This 6‐quinolin‐8‐yl‐2,2′‐bipyridine anchor thus serves as a prototype for the next generation of RuII sensitizers with any tridentate ancillary.  相似文献   

15.
Two conjugated molecules, TADPP3 and TADPP2‐TT , are reported, in which three and two dithienyldiketopyrrolopyrrole (DPP) moieties, respectively, are substituted at the meta positions of benzene. Based on cyclic voltammetry and absorption data, TADPP3 and TADPP2‐TT possess similar HOMO and LUMO energies of about ?5.2 and ?3.4 eV, respectively. Thin films of TADPP3 and TADPP2‐TT exhibit p‐type semiconducting behavior with hole mobilities of 2.36×10?3 and 3.76×10?4 cm2 V?1 s?1 after thermal annealing. Molecules TADPP3 and TADPP2‐TT were utilized as p‐type photovoltaic materials to fabricate organic solar cells after blending with phenyl C71 butyric acid methyl ester ( PC71BM ) and phenyl C61 butyric acid methyl ester ( PC61BM ). The relatively low JSC and fill factor values can be attributed to poor film morphologies based on AFM and XRD studies. A solar cell with a thin film of TADPP3 with PC71BM in a weight ratio of 1:2 exhibits a high open‐circuit voltage (VOC) of 0.99 V and a power conversion efficiency (PCE) of 2.47 %. Interestingly, TADPP3 can also be employed as an n‐type photovoltaic material. The blended thin film of TADPP3 with P3HT in a weight ratio of 1:2 gave a high VOC of 1.11 V and a PCE of 1.08 % after thermal annealing.  相似文献   

16.
17.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

18.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

19.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

20.
The effects of the dye‐adsorption solvent on the performances of the dye‐sensitized solar cells (DSSCs) based on black dye have been investigated. The highest conversion efficiency (10.6 %) was obtained in the cases for which 1‐PrOH and the mixed solvent of EtOH and tBuOH (3:1 v/v) were employed as dye‐adsorption solvents. The optimized value for the dielectric constant of the dye‐adsorption solvent was found to be around 20. The DSSCs that used MeOH as a dye‐adsorption solvent showed inferior solar‐cell performance relative to the DSSCs that used EtOH, 1‐PrOH, 2‐PrOH, and 1‐BuOH. Photo‐ and electrochemical measurements of black dye both in solution and adsorbed onto the TiO2 surface revealed that black dye aggregates at the TiO2 surface during the adsorption process in the case for MeOH. Both the shorter electron lifetime in the TiO2 photoelectrode and the greater resistance in the TiO2–dye–elecrolyte interface, attributed to the dye aggregation at the TiO2 surface, cause the decrease in the solar‐cell performance of the DSSC that used MeOH as a dye adsorption solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号