首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X‐ray/neutron (X/N) diffraction data measured at very low temperature (15 K) in conjunction with ab initio theoretical calculations were used to model the crystal charge density (CD) of the host–guest complex of hydroquinone (HQ) and acetonitrile. Due to pseudosymmetry, information about the ordering of the acetonitrile molecules within the HQ cavities is present only in almost extinct, very weak diffraction data, which cannot be measured with sufficient accuracy even by using the brightest X‐ray and neutron sources available, and the CD model of the guest molecule was ultimately based on theoretical calculations. On the other hand, the CD of the HQ host structure is well determined by the experimental data. The neutron diffraction data provide hydrogen anisotropic thermal parameters and positions, which are important to obtain a reliable CD for this light‐atom‐only crystal. Atomic displacement parameters obtained independently from the X‐ray and neutron diffraction data show excellent agreement with a |ΔU| value of 0.00058 Å2 indicating outstanding data quality. The CD and especially the derived electrostatic properties clearly reveal increased polarization of the HQ molecules in the host–guest complex compared with the HQ molecules in the empty HQ apohost crystal structure. It was found that the origin of the increased polarization is inclusion of the acetonitrile molecule, whereas the change in geometry of the HQ host structure following inclusion of the guest has very little effect on the electrostatic potential. The fact that guest inclusion has a profound effect on the electrostatic potential suggests that nonpolarizable force fields may be unsuitable for molecular dynamics simulations of host–guest interaction (e.g., in protein–drug complexes), at least for polar molecules.  相似文献   

2.
Poly(ethylene glycol) (PEG) can form either the inclusion complex with α‐cyclodextrins (α‐CDs) through host–guest interactions or the interpolymer complex with poly(acrylic acid) (PAA) through hydrogen‐bonding interaction. Mixing α‐CD, PEG, and PAA ternary components in an aqueous solution, the competition between host–guest and hydrogen‐bonding interactions occurs. Increasing feed ratio of α‐CD:EG:AA from 0:1:1 to 0.2:1:1 (molar ratio), various interesting supramolecular polymer systems, such as hydrogen‐bonding complex, dynamic polyrotaxane, crystalline inclusion complex, and thermoresponsive hydrogel, are successively obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1114–1120, 2008  相似文献   

3.
Metal–organic frameworks (MOFs) are an extremely important class of porous materials with many applications. The metal centers in many important MOFs are zinc cations. However, their Zn environments have not been characterized directly by 67Zn solid‐state NMR (SSNMR) spectroscopy. This is because 67Zn (I=5/2) is unreceptive with many unfavorable NMR characteristics, leading to very low sensitivity. In this work, we report, for the first time, a 67Zn natural abundance SSNMR spectroscopic study of several representative zeolitic imidazolate frameworks (ZIFs) and MOFs at an ultrahigh magnetic field of 21.1 T. Our work demonstrates that 67Zn magic‐angle spinning (MAS) NMR spectra are highly sensitive to the local Zn environment and can differentiate non‐equivalent Zn sites. The 67Zn NMR parameters can be predicted by theoretical calculations. Through the study of MOF‐5 desolvation, we show that with the aid of computational modeling, 67Zn NMR spectroscopy can provide valuable structural information on the MOF systems with structures that are not well described. Using ZIF‐8 as an example, we further demonstrate that 67Zn NMR spectroscopy is highly sensitive to the guest molecules present inside the cavities. Our work also shows that a combination of 67Zn NMR data and molecular dynamics simulation can reveal detailed information on the distribution and the dynamics of the guest species. The present work establishes 67Zn SSNMR spectroscopy as a new tool complementary to X‐ray diffraction for solving outstanding structural problems and for determining the structures of many new MOFs yet to come.  相似文献   

4.
《Chemphyschem》2003,4(10):1059-1064
The exact location and orientation of dynamic species in structural studies continues to be a serious challenge, yet it is of paramount importance in modeling guest–host interactions so as to improve our understanding of the multiple weak interactions that govern many chemical and biological processes. The acetone guest in the tBC (ptert‐butylcalixarene) host presents such a challenge, as initial guest positions obtained from single crystal X‐ray diffraction (XRD) are incompatible with the 2H NMR spectrum. A detailed consideration of the diffraction data showed that more complicated structural models could be constructed that were consistent with the NMR data and still yielded satisfactory diffraction residuals. These models agree that one acetone methyl group is inserted into the deep cavity, and that it exchanges with the second methyl group outside. The outside methyl group in turn can switch positions with the carbonyl group, but the distribution of the methyl and carbonyl groups over the two sites is not equal. One factor that poses additional difficulty in deciding between models is whether the actual space group is tetragonal (P4/n), or twinned monoclinic (P2/n). All of the structural models considered here disagree substantially with the one proposed in an earlier publication.  相似文献   

5.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

6.
7.
8.
To understand host–guest interactions of hydrocarbon clathrate hydrates, we investigated the crystal structure of simple and binary clathrate hydrates including butane (n‐C4H10 or iso‐C4H10) as the guest. Powder X‐ray diffraction (PXRD) analysis using the information on the conformation of C4H10 molecules obtained by molecular dynamics (MD) simulations was performed. It was shown that the guest n‐C4H10 molecule tends to change to the gauche conformation within host water cages. Any distortion of the large 51264 cage and empty 512 cage for the simple iso‐C4H10 hydrate was not detected, and it was revealed that dynamic disorder of iso‐C4H10 and gauchenC4H10 were spherically extended within the large 51264 cages. It was indicated that structural isomers of hydrocarbon molecules with different van der Waals diameters are enclathrated within water cages in the same way owing to conformational change and dynamic disorder of the molecules. Furthermore, these results show that the method reported herein is applicable to structure analysis of other host–guest materials including guest molecules that could change molecular conformations.  相似文献   

9.
Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid‐state NMR (MAS ssNMR). Evaporation selectively removed non‐encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, 1H/13C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.  相似文献   

10.
Two new metal pnictide halides, (Hg9.75As5.5)(GaCl4)3 and (Hg13Sb8)(ZnBr4)4, have been prepared by solid‐state reactions. Their structures feature 3D cationic host frameworks built of mercury pnictide polyhedra and form 1D tunnels filled with discrete guest halide polyanions; the guests and hosts are assembled by van der Waals interactions. Both complexes exhibit good single‐crystal humidity sensitivity, with a humidity sensitivity factor as big as three orders of magnitude, a quick resistance response, fast recovery, and good reproducibility. This study provide a new way to design promising resistive humidity detectors by introducing van der Waals host–guest interactions into their structures.  相似文献   

11.
A peptidomimetic compound undergoes a reversible single‐crystal‐to‐single‐crystal transformation upon guest release/uptake with the transformation involving a drastic conformational change. The extensive and reversible alteration in the solid state is connected to the formation of an unprecedented “CH–π zipper” which can reversibly open and close (through the formation of CH–π interactions), thus allowing for guest sensing.  相似文献   

12.
Two molecules of cavitand tetraboronic acid and four molecules of various bis(catechol) linkers self‐assemble into capsules through the formation of eight dynamic boronic ester bonds. Each capsule has a different cavity size depending on the linker used, and shows particular guest encapsulation selectivity. A chiral capsule made up of the cavitand and a chiral bis(catechol) linker was also constructed. This capsule induces supramolecular chirality with respect to a prochiral biphenyl guest by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

13.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

14.
Guest Effect : The differences of nitrogen atom positions and the bridge bonds linked to two pyridine rings of some bipyridine guests can significantly affect the binding abilities and inclusion geometries of β‐cyclodextrin with the guests in both the solution and solid states.

  相似文献   


15.
Currently, main‐group metal cations are totally neglected as the structure‐building blocks for the self‐assembly of supramolecular coordination metallocages due to the lack of directional bonding. However, here we show that a common Arrhenius acid–base neutralization allows the alkaline‐earth metal cations to act as charged binders, easily connecting two or more highly directional anionic transition‐metal‐based metalloligands to coordination polymers. With a metal salt such as K+PF6? added during the neutralization, the main‐group metal‐connected skeleton can be templated by the largest yet reported ionic‐aggregate anion, K2(PF6)3?, formed from KPF6 in solution, into molecular metallocages, encapsulating the ion. Crystal‐structure details, DFT‐calculation results, and controlled‐release behavior support the presence of K2(PF6)3? as a guest in the cage. Upon removal of PF6? ions, the cage stays intact. Other ions like BF4? can be put back in.  相似文献   

16.
A new series of tris(2‐aminoethyl)amine (tren)‐based L ‐alanine amino acid backboned tripodal hexaamide receptors (L1–L5) with various attached moieties based on electron‐withdrawing fluoro groups and lipophilicity have been synthesized and characterized. Detailed binding studies of L1–L5 with different anions, such as halides (F?, Cl?, Br?, and I?) and oxyanions (AcO?, BzO? (Bz=benzoyl), NO3?, H2PO4?, and HSO4?), have been carried out by isothermal titration calorimetric (ITC) experiments in acetonitrile/dimethylsulfoxide (99.5:0.5 v/v) at 298 K. ITC titration experiments have clearly shown that receptors L1–L4 invariably form 1:1 complexes with Cl?, AcO?, BzO?, and HSO4?, whereas L5 forms a 1:1 complex only with AcO?. In the case of Br?, I?, and NO3?, no appreciable heat change is observed owing to weak interactions between these anions and receptors; this is further confirmed by 1H NMR spectroscopy. The ITC binding studies of F? and H2PO4? do not fit well for a 1:1 binding model. Furthermore, ITC binding studies also revealed slightly higher selectivity of this series of receptors towards AcO? over Cl?, BzO?, and HSO4?. Solid‐state structural evidence for the recognition of Cl? by this new category of receptor was confirmed by single‐crystal X‐ray structural analysis of the complex of tetrabutylammonium chloride (TBACl) and L1. Single‐crystal X‐ray diffraction clearly showed that the pentafluorophenyl‐functionalized amide receptor (L1) encapsulated Cl? in its cavity by hydrogen bonds from amides, and the cavity of L1 was capped with a TBA cation through hydrogen bonding and ion‐pair interactions to form a capped‐cleft orientation. To understand the role of the cationic counterpart in solution‐state Cl? binding processes with this series of receptors (L1–L4), a detailed Cl? binding study was carried out with three different tetraalkylammonium (Me4N+, Et4N+, and Bu4N+) salts of Cl?. The binding affinities of these receptors with different tetralkylammonium salts of Cl? gave binding constants with the TBA cation in the following order: butyl>ethyl>methyl. This study further supports the role of the TBA countercation in ion‐pair recognition by this series of receptors.  相似文献   

17.
18.
Two‐dimensional NOESY 1H NMR, isothermal titration calorimetric (ITC), and rheological studies of host–guest complexation by β‐cyclodextrin, β‐CD, and the β‐CD groups of the linked β‐CD dimers, β‐CD2ur and β‐CD2su and trimers, β‐CD3bz and β‐CDen3bz, of the dodecyl, C12, substituents of the 3.0% substituted poly(acrylate), PAAC12, in aqueous solution are reported. Complexations by β‐CD, β‐CD2ur, β‐CD2su, β‐CD3bz, and β‐CDen3bz of the C12 substituents of PAAC12 in 0.2 wt % solution exhibit complexation constants 10?4K11 (298.2 K) = 0.83, 5.80, 4.40, 15.0, and 1.50 dm3 mol?1, respectively. (The corresponding ΔH11 and TΔS11 show a linear relationship.) The rheologically determined zero‐shear viscosities of 3.3 wt % aqueous solutions of PAAC12 alone and in the presence of β‐CD, β‐CD2ur, β‐CD2su, β‐CD3bz, and β‐CDen3bz (where the β‐CD groups and C12 substituents are equimolar) are 0.016, 0.03, 0.12, 0.25, 0.12, and 0.08 Pa s (298.2 K), respectively, and show PAAC12 to form interstrand cross‐links through complexation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1278–1286  相似文献   

19.
Five dioxynaphthalene[38]‐crown‐10 ( DNP38C10 ) macrocycles bearing one, two, three, or four allyl moieties have been synthesized and their ability to spontaneously self‐assemble with methyl viologen to form [2]pseudorotaxanes has been evaluated. Association constants between methyl viologen and several of the allyl‐functionalized DNP38C10 macrocycles are found to be comparable to that of methyl viologen and unfunctionalized DNP38C10 , however, the enthalpic and entropic factors that underlie overall binding free energy vary systematically with increasing allyl substitution. These variations are explained through a combination of solution phase and solid‐state analysis of the macrocycles and their complexes. The utility of endowing DNP38C10 macrocycles with allyl moieties is further demonstrated by the ease with which they can be functionalized through thiol‐ene click chemistry.  相似文献   

20.
The dynamics of poly(dimethylsiloxane) in its inclusion compound with γ‐cyclodextrin are elucidated using modern fast‐MAS solid‐state NMR techniques. Measurements of methyl 1H–1H and 1H–13C dipolar coupling constants indicate that the polymer undergoes a uniform motion, rendering all methyl groups equivalent. The dynamics of the Si—C bond is characterized by either a dynamic order parameter of S = 0.72, or, assuming a stably rotating helical structure, an inclination angle of 73° relative to the rotation axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号