首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

2.
The properties of X‐ray vacuum‐gap waveguides (WGs) with additional periodic structure on one of the reflecting walls are studied. Theoretical considerations, numerical simulations and experimental results confirm that the periodic structure imposes additional conditions on efficient propagation of the electromagnetic field along the WGs. The transmission is maximum for guided modes that possess sufficient phase synchronism with the periodic structure (here called `super‐resonances'). The field inside the WGs is essentially given at low incidence angle by the fundamental mode strongly coupled with the corresponding phased‐matched mode. Both the simulated and the experimental diffraction patterns show in the far field that propagation takes place essentially only for low incidence angles, confirming the mode filtering properties of the structured X‐ray waveguides.  相似文献   

3.
The synchrotron‐based hard X‐ray nanotomography beamline, named 7C X‐ray Nano Imaging (XNI), was recently established at Pohang Light Source II. This beamline was constructed primarily for full‐field imaging of the inner structures of biological and material samples. The beamline normally provides 46 nm resolution for still images and 100 nm resolution for tomographic images, with a 40 µm field of view. Additionally, for large‐scale application, it is capable of a 110 µm field of view with an intermediate resolution.  相似文献   

4.
A hard X‐ray scanning microscope installed at the Hard X‐ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature of a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.  相似文献   

5.
Combined X‐ray photon correlation spectroscopy (XPCS) and diffracted X‐ray tracking (DXT) measurements of carbon‐black nanocrystals embedded in styrene–butadiene rubber were performed. From the intensity fluctuation of speckle patterns in a small‐angle scattering region (XPCS), dynamical information relating to the translational motion can be obtained, and the rotational motion is observed through the changes in the positions of DXT diffraction spots. Graphitized carbon‐black nanocrystals in unvulcanized styrene–butadiene rubber showed an apparent discrepancy between their translational and rotational motions; this result seems to support a stress‐relaxation model for the origin of super‐diffusive particle motion that is widely observed in nanocolloidal systems. Combined measurements using these two techniques will give new insights into nanoscopic dynamics, and will be useful as a microrheology technique.  相似文献   

6.
An X‐ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X‐ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.  相似文献   

7.
Transmission X‐ray mirrors have been fabricated from 300–400 nm‐thick low‐stress silicon nitride windows of size 0.6 mm × 85 mm. The windows act as a high‐pass energy filter at grazing incidence in an X‐ray beam for the beam transmitted through the window. The energy cut‐off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut‐off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22°, a 0.3 mm × 0.3 mm X‐ray beam was allowed to pass through the mirror with a cut‐off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut‐off can be adjusted from 8 to 12 keV at an angle of 0.26° to 0.18°, respectively. The observed mirror transmittance was above 80% for a 300 nm‐thick film.  相似文献   

8.
The only available tabletop electron storage rings are the machines from the MIRRORCLE series. The electrons are accelerated in a microtron and injected into the storage ring. During its circulation, each electron passes through a tiny target many times, emitting a photon beam. Both the spectrum and the angular distribution of the radiation depend on the material, the thickness and the shape of the target. In this paper measured angular distributions of the radiation from several different targets in the magnetic field of the 20 MeV storage ring MIRRORCLE‐20SX are presented. The detector comprises a 3 mm × 3 mm × 8.5 µm plastic scintillator (PS) coupled to a photomultiplier by a bundle of optical fibers. The output of the photomultiplier is digitized by an IF converter. This detector is sensitive mostly to soft X‐ray radiation, and its PS is moved by a mechanical system in a plane perpendicular to the radiation axis. The measured angular distributions for Mo and Sn targets contain an annulus which is attributed to transition radiation. The angular distributions for Al, carbon nanotube and diamond‐like carbon (DLC) targets show some suppression of the radiation along the magnetic field. This is the first evidence of observation of the angular distribution of synchrotron Cherenkov radiation, which represents Cherenkov radiation in a magnetic field. The power radiated from the DLC target is estimated.  相似文献   

9.
Using the scanning transmission X‐ray microscope at BESSY II, colloidal structures from a Chernozem soil have been studied with a spatial resolution around 60 nm and a spectral resolution of 1700 at the K‐absorption edge of carbon. Elemental mapping has been used to determine the distribution of organic matter within the colloidal structures. Spectra have been extracted from image stacks to obtain information about the chemical state. For the analysis of the latter, principal component analysis and cluster analysis have been applied. It was possible, for example, to discriminate clay particles against organic components.  相似文献   

10.
Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X‐ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X‐ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super‐resolved ultra‐structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step‐ and fly‐scanning modes, robust, simultaneous XFM‐SXDM is demonstrated.  相似文献   

11.
The coupling and propagation of electromagnetic waves through planar X‐ray waveguides (WG) with vacuum gap and Si claddings are analyzed in detail, starting from the source and ending at the detector. The general case of linearly tapered WGs (i.e. with the entrance aperture different from the exit one) is considered. Different kinds of sources, i.e. synchrotron radiation and laboratory desk‐top sources, have been considered, with the former providing a fully coherent incoming beam and the latter partially coherent beams. It is demonstrated that useful information about the parameters of the WG can be derived, comparing experimental results with computer simulation based on analytical solutions of the Helmholtz equation which take into account the amplitude and phase matching between the standing waves created in front of the WG, and the resonance modes propagating into the WG.  相似文献   

12.
A compact transmission X‐ray microscope has been designed and implemented based on a cylindrical symmetry around the optical axis that sharply limits the instabilities due to thermal mechanical drift. Identical compact multi‐axis closed‐loop actuation modules drive different optical components. The design is modular and simplifies the change of individual parts, e.g. the use of different magnification and focusing devices. This compact instrument can be easily transported between laboratory and synchrotron facilities and quickly put into operation. An automated alignment mechanism simplifies the assembly of different modules after transportation. After describing the design details, the results of the first tests are presented.  相似文献   

13.
Multilayer optical elements for hard X‐rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite‐element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X‐ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite‐element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present‐day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer‐functioned elements, a thermal‐structural FEA model has been implemented for multilayer X‐ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.  相似文献   

14.
The first imaging results obtained from a small‐size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X‐rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating‐based differential phase‐contrast imaging method.  相似文献   

15.
L‐series emissions of manganese, iron, and zinc oxides were studied using electron beam excitation and highly brilliant synchrotron radiation excitation. We showed that manganese and iron oxides show different Lβ/Lα intensity ratio because of their oxidation states and excitation electron voltages. On the other hand, we could not get any L‐series emissions from those bulk samples when excited by normal incident high‐energy monochromatic X‐rays, while samples of thin films and samples excited by grazing incident monochromatic X‐rays showed clear emissions. It is suggested that the difference of Lβ/Lα intensity ratio due to the oxidized states mainly concerns with the Coster–Kronig transition ratio of the samples, while self‐absorption effects should also deeply contribute the ratio, considering the experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The possibility of splitting a thin (e.g. undulator) X‐ray beam based on diffraction–refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left‐hand part of the roof and the other half impinges on the right‐hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel‐cut crystals with roof‐like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.  相似文献   

17.
An end‐station for X‐ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end‐station is dedicated to the study of shallow core electronic excitations using non‐resonant inelastic X‐ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X‐ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end‐station provides an unprecedented instrument for X‐ray Raman scattering, which is a spectroscopic tool of great interest for the study of low‐energy X‐ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.  相似文献   

18.
X‐ray phase‐contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex‐valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating‐based interferometry and propagation‐based phase contrast combined with single‐distance phase retrieval applied to a non‐homogeneous sample is presented (acquired at beamline ID19‐ESRF). It is shown that grating‐based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.  相似文献   

19.
20.
Focused hard X‐ray microbeams for use in X‐ray nanolithography have been investigated. A 7.5 keV X‐ray beam generated at an undulator was focused to about 3 µm using a Fresnel zone plate fabricated on silicon. The focused X‐ray beam retains a high degree of collimation owing to the long focal length of the zone plate, which greatly facilitates hard X‐ray nanoscale lithography. The focused X‐ray microbeam was successfully utilized to fabricate patterns with features as small as 100 nm on a photoresist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号