首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For developing new excellent electrocatalysts toward methanol and oxygen, branched Au nanocrystals have been prepared in high yield by the reaction of HAuCl4 and sodium diphenylamine‐4‐sulfonate in the presence of PEG (polyethylene glycol) at room temperature. When the amount of PEG was in the range of 1–3 mL, branched Au nanocrystals were all obtained, and the amounts of sodium diphenylamine‐4‐sulfonate and HAuCl4 had no obvious effect on the morphology of gold nanocrystals. PEG molecules play an important role in the formation of branched gold nanocrystals. The nanocrystals were characterized by transmission electron microscopy (TEM), selected area electron diffraction, high‐resolution transmission electron microscopy (HRTEM) and UV‐Vis absorption spectrum. HRTEM research suggests that the tips of gold nanocrystals grow selectively in the [111] directions. The UV‐Vis absorption spectrum displays two‐separated surface plasmon resonance peaks.  相似文献   

2.
Mesoporous Au/TiO2 nanocomposite microspheres have been synthesized by using a microemulsion‐based bottom‐up self‐assembly (EBS) process starting from monodisperse gold and titania nanocrystals as building blocks. The microspheres had large surface areas (above 270 m2 g?1) and open mesopores (about 5 nm), which led to the adsorption‐driven concentration of organic molecules in the vicinity of the microspheres. Au nanoparticles, which were stably confined within the microspheres, enhanced the absorption over the broad UV/Vis/NIR spectroscopic range, owing to their strong surface plasmon resonance (SPR); as a result, the Au nanoparticles promoted the visible‐light photo‐induced degradation of organic compounds.  相似文献   

3.
Size-controlled EuS nanoparticles were synthesized by the reaction of europium metal with thiourea as a sulfur source in liq. NH3, whose surface was confirmed to be modified with thiourea by FT-IR measurement, and the opto-magnetic properties (Faraday effect) of the EuS nanoparticles were investigated by using PMMA films containing the nanoparticles, showing that their Faraday rotation peaks were adjustable by control of their particle size.  相似文献   

4.
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles.  相似文献   

5.
Size-controlled formation of colloidal aggregates composed of cube-shaped EuS nanocrystals, EuS NCs, in solution phase are reported and their optical and magneto-optical properties are studied. The average size of the colloidal particles of the EuS NCs-aggregates formed in 1-pentanol, 1-hexanol, and 1-octanol were ca. 800, 500, and 100 nm, respectively. Self-organized cubic-type superlattice structure was evaluated in the colloidal aggregates by means of the small-angle X-ray diffraction measurements, which is similar to those in the macroscopic 3D superlattice structures. The distances between NCs in the EuS NCs-aggregates are dependent on alkyl chain length of the solvent alcohol. Magneto-optic properties of EuS NCs-aggregates and the monomeric EuS nanocrystals in liquid media are characterized with magnetic circular dichroism spectra. The active wavelength of EuS NCs-aggregates is considerably longer than that of the monomeric EuS nanocrystals.  相似文献   

6.
In this study, we have developed a simple and green method for one-pot synthesis of ultrathin gold nanocrystals attached to graphene through photo irradiation. High-yield ultrathin Au nanocrystals are distributed on the reduced graphene oxide, immediately followed by the deoxygenation of graphene oxide in the absence of chemical reductants and surfactants. The procedure has been thoroughly completed and the products have been analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), etc. The results show that both graphene oxide and photo irradiation play essential roles in the formation of ultrathin Au nanocrystals. The nanohybrids also display excellent electro-catalytical performance to methanol oxidation. This study not only has potential in the applications of bio-sensing and fuel cells, but also provides new procedures for the preparation of metal/graphene nanomaterials.  相似文献   

7.
The consequences of treatment of gold nanocrystals present in polypyrrole–gold composites and electrodeposited gold nanocrystals (PPY–Au and Au NPs) with OH radicals generated in Fenton’s reaction were investigated. Particularly, the changes in the morphology and the electrochemical properties of those materials are shown. For both materials, the etching effect was noticed. Contrary to significantly reduced catalytic activity, the changes observed in size and shape of gold nanostructures were less pronounced. In the case of PPY–Au composite material, the etching effects were less intense. Even after a 60-min radical treatment of the PPY–Au composite material, the gold–nanocrystal catalytic activity remained high. The limited dissolution of the gold nanocrystals in the PPY–Au composites, compared to bare Au NPs, can be explained by the presence of the polymer which served as a kind of protective barrier against the oxidizing agent. A decrease in the electrocatalytic properties vs. the electrooxidation of ethanol of both forms of gold nanocrystals were observed after the treatment with hydroxyl radicals.  相似文献   

8.
《Chemphyschem》2003,4(11):1203-1210
The synthesis and magneto‐optical properties of HgTe nanocrystals capped with HgxCd1?xTe(S) alloyed shells have been investigated. The magneto‐optical measurements included the use of optically detected magnetic resonance (ODMR) and circular polarized photoluminescence (CP‐PL) spectroscopy. The PL spectra suggest the existence of luminescence events from both the core HgTe and the HgxCd1?xTe(S) shells. The continuous‐wave (cw) and time‐resolved ODMR measurements revealed that the luminescence at the shell regime is associated with a trap‐to‐band recombination emission. The electron trap is comprised of a Cd–Hg mixed site, confirming the existence of an alloyed HgxCd1?xTe(S) composition. The ODMR data and the CP‐PL measurements together revealed the g‐values of the trapped electron and the valence band hole.  相似文献   

9.
The optical and electron paramagnetic resonance (EPR) properties of InP nanocrystals, in which metallic gold or indium is present as an incorporated part of the nanocrystals, have been studied. A study of Au/InP quantum rods supports different carrier localization regimes compared to metal-free quantum rods, including the charge-separated state for which the electron and hole are located in different parts of the heterostructure. They also show that elongated semiconductors that grow on metallic catalysts have electronic properties that are different from those of pure semiconductor nanocrystals of the same shape. We have also developed a simple method for growing melted indium particles on the surface of colloidal spherical InP nanocrystals, and in these In/InP nanocrystals the emission is completely quenched while the absorption spectrum moves to red due to the strong mixing of the semiconductor and metal electronic states.  相似文献   

10.
In this study, we report a simple solution‐phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil‐like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold–zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as‐prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.  相似文献   

11.
Enhanced optical properties of graphene oxide-Au nanocrystal composites   总被引:1,自引:0,他引:1  
A simple strategy based on electrostatic interactions was utilized to assemble Au nanocrystals of various morphologies onto graphene oxide (GO). This method allows deposition of metal nanocrystals of different shapes onto GO. The linear and nonlinear optical properties of GO-Au nanocrystal composites have been examined. The extinction spectra of Au nanocrystals became broadened and red-shifted from the visible to the near IR upon formation of GO-Au nanocrystal composites. A more than 4-fold increase in two-photon excitation emission intensity was observed from the GO-Au nanocrystal composites compared to pure Au nanocrystals. The SERS signals of the composites were found to be strongly dependent on the morphology of Au nanocrystals, with SERS enhancement factors ranging from 9 to 20.  相似文献   

12.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

13.
The transient activation of function using chemical fuels is common in nature, but much less in synthetic systems. Progress towards the development of systems with a complexity similar to that of natural ones requires chemical fuel selectivity. Here, we show that a self‐assembled nanosystem, composed of monolayer‐protected gold nanoparticles and a fluorogenic peptide, is activated for transient signal generation only in case the chemical fuel matches the recognition site present at the nanoparticle surface. A modification of the recognition site in the nanosystem completely changes the chemical fuel selectivity. When two nanosystems are simultaneously present, the selectivity expressed by the system depends on the concentration of nucleotide added.  相似文献   

14.
Silver nanocrystals, self-organized in compact hexagonal networks, on gold and graphite exhibit anisotropic optical properties. From polarized electron photoemission spectroscopy, a two-photon mechanism is demonstrated and an enhancement due to the surface plasmon resonance (SPR) of the nanocrystal film is observed. Two SPR peaks appear, due to dipolar interactions and induced by the self-organization of silver nanocrystals. This property is used to probe the substrate effect on the plasmon resonance. Its damping is related to particle–substrate interactions.  相似文献   

15.
Polystyrene (PS)/gold (Au) core-shell nanocomposites with tunable size, high stability, and excellent catalytic activity have been synthesized by a facile method that combines the ionic self-assembly with the in situ reduction. The composition and stoichiometry, as well as its morphology and optical properties of these nanocomposites have been examined and verified by various characterization techniques. The size and the coverage of gold nanoparticles (NPs) can be simply tailored by changing the amount of 3-aminopropyltrimethoxysilane (APTES), the functionalization time, the protonation time, and the amount of chloroauric acid (HAuCl4). The continuous red shifts of the localized surface plasmon resonance absorption of the Au NPs on the PS spheres are observed. Importantly, the obtained Au NPs with controllable and uniform size on the surfaces of amino-functionalized PS spheres exhibit excellent size-dependent catalytic properties for the reduction of 4-nitrophenol (4-NP) by NaBH4.  相似文献   

16.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   

17.
We present a comparative study of optical and electronic properties for PbS nanocrystals and Au-PbS core-shell nanostructures. In Au-PbS nanostructures, we observed two nontrivial synergistic effects: (i) extinction enhancement due to coupling of surface plasmon resonance in the Au core to the excitonic states in the semiconducting PbS shell, and (ii) strong p-type electronic doping of Au-PbS nanocrystal solids that we explained by the intraparticle charge transfer between the PbS shell and the Au core.  相似文献   

18.
The Au(I)–Au(I) closed‐shell or aurophilic attraction has been the subject of interest in the experimental and theoretical chemistry fields, due to the intriguing properties associated to it. The presence of phosphorescence in “aurophilic” compounds has been addressed to a wide range of applications, but it has not yet been fully understood. A theoretical study on the electronic and phosphorescent properties of the following series of dinuclear gold complexes has been performed: [Au2(dmpm) (i‐mnt)] ( 1 ), [Au2(μ‐Me‐TU) (μ‐dppm)] ( 2 ), and [Au2(μ‐G)(μ‐dmpe)] ( 3 ). Full geometry optimizations at the second‐order Møller–Plesset perturbation theory (MP2) were carried out for each of the species. These calculations made evident that, at the ground‐state geometry, the Au(I) cations allocated at the center of the ring show a short Au–Au distance below the sum of the van der Waals radii, at the range of the aurophilic attraction. An intermolecular Au(I)–Au(I) closed‐shell attraction for a pair of the systems under study is found. This attraction is comparable to that of the hydrogen bonds. The phosphorescent properties experimentally observed for this series were also characterized through ab initio techniques. The obtained results allow to fit reasonably the excitation energies with the experimental data and to identify a correlation between the strength of the Au(I)–Au(I) interaction and the phosphorescent behavior. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Heterodimer nanostructures have attracted extensive attention, owing to an increasing degree of complexity, functionality, and then importance. So far, all the reported ones are built from solid nanoparticles. Herein, nearly monodisperse heterodimer nanostructures are constructed by hollow PbSx and solid Au domains simultaneously through a mild reaction between PbS nanocrystals and the gold species in the presence of dodecylamine. Control experiments clearly reveal the underlying formation mechanism of the hollow PbSx–solid Au heterodimers. The AuIII species in the solution, lead to the etching of PbS nanocrystals and the AuI species facilitate the control of the number of gold domains per nanoparticle. Dodecylamine molecules not only work as a stabilizer in the reaction, but also act as a reducing agent that could greatly affect the morphology of the product. The optical properties of the heterodimers are investigated based on UV/Vis absorption spectroscopy and Raman spectroscopy. This novel heterodimer nanostructure pushes the development of complex nanocrystal‐based architectures forward, and also provides many opportunities for potential applications.  相似文献   

20.
Mes*‐substituted 2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene, 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, and 3,3‐diphenyl‐1,3‐diphosphapropenes (Mes*=2,4,6‐tri‐tert‐butylphenyl) were employed as P ligands of gold(I) complexes. The (E,E)‐2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene functioned as a P2 ligand for digold(I) complex formation with or without intramolecular Au–Au contact, which depends on the conformation of the 1,3‐diphosphabuta‐1,3‐diene. The 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, which has a rigid s‐cis P?C? C?P skeleton, afforded the corresponding digold(I) complexes with a slight distortion of the planar diphosphinidenecyclobutene framework and intramolecular Au–Au contact. In the case of the 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, only the phosphorus atom coordinated to gold, and the sulfur atom showed almost no intra‐ or intermolecular coordination to gold. On the other hand, the 1,3‐diphosphapropenes behaved as nonequivalent P2 ligands to afford the corresponding mono‐ and digold(I) complexes. Some phosphaalkene–gold(I) complexes showed catalytic activity for 1,6‐enyne cycloisomerization without cocatalysts such as silver hexafluoroantimonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号