首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s?1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.  相似文献   

3.
A porphyrin–flavin‐linked dyad and its zinc and palladium complexes (MPor?Fl: 2 ?M, M=2 H, Zn, and Pd) were newly synthesized and the X‐ray crystal structure of 2 ?Pd was determined. The photodynamics of 2 ?M were examined by femto‐ and nanosecond laser flash photolysis measurements. Photoinduced electron transfer (ET) in 2 ?H2 occurred from the singlet excited state of the porphyrin moiety (H2Por) to the flavin (Fl) moiety to produce the singlet charge‐separated (CS) state 1(H2Por.+?Fl.?), which decayed through back ET (BET) to form 3[H2Por]*?Fl with rate constants of 1.2×1010 and 1.2×109 s?1, respectively. Similarly, photoinduced ET in 2 ?Pd afforded the singlet CS state, which decayed through BET to form 3[PdPor]*?Fl with rate constants of 2.1×1011 and 6.0×1010 s?1, respectively. The rate constant of photoinduced ET and BET of 2 ?M were related to the ET and BET driving forces by using the Marcus theory of ET. One and two Sc3+ ions bind to the flavin moiety to form the Fl?Sc3+ and Fl?(Sc3+)2 complexes with binding constants of K1=2.2×105 M ?1 and K2=1.8×103 M ?1, respectively. Other metal ions, such as Y3+, Zn2+, and Mg2+, form only 1:1 complexes with flavin. In contrast to 2 ?M and the 1:1 complexes with metal ions, which afforded the short‐lived singlet CS state, photoinduced ET in 2 ?Pd???Sc3+ complexes afforded the triplet CS state (3[PdPor.+?Fl.??(Sc3+)2]), which exhibited a remarkably long lifetime of τ=110 ms (kBET=9.1 s?1).  相似文献   

4.
Understanding the mechanism of efficient photoinduced electron‐transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor–acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat‐p‐phenylene) (CBPQT4+) acceptor. The X‐ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP+.–CBPQT3+. spin‐correlated radical‐ion pair having a τ=146 ns lifetime and a spin–spin exchange interaction of only 0.23 mT. The long radical‐ion‐pair lifetime results from weak donor–acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT3+..  相似文献   

5.
Two donor–bridge–acceptor conjugates (5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminobenzoate)phenyl] porphyrin (TPPZ) and 5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminostyryl)phenyl] porphyrin (TPPX)) were covalently linked to triphenylamine (TPA) at the meso‐position of porphyrin ring. The triphenylamine entities were expected to act as energy donors and the porphyrins to act as an energy acceptor. In this paper, we report on the synthesis of these multibranched‐porphyrin‐functionalized Pt nanocomposites. The conjugates used here not only served as a stabilizer to prevent agglomeration of Pt nanoparticles, but also as a light‐harvesting photosensitizer. The occurrence of photoinduced electron‐transfer processes was confirmed by time‐resolved fluorescence and photoelectrochemical spectral measurements. The different efficiencies for energy and electron transfer in the two multibranched porphyrins and the functionalized Pt nanocomposites were attributed to diverse covalent linkages. Moreover, in the reduction of water to produce H2, the photocatalytic activity of the Pt nanocomposite functionalized by TPPX, in which the triphenylamine and porphyrin moieties are bonded through an ethylene bridge, was much higher than that of the platinum nanocomposite functionalized by TPPZ, in which the two moieties are bonded through an ester. This investigation demonstrates the fundamental advantages of constructing donor–bridge–acceptor conjugates as highly efficient photosensitizers based on efficient energy and electron transfer.  相似文献   

6.
The first examples of rodlike donor–photosensitizer–acceptor arrays based on bis‐2,6‐di(quinolin‐8‐yl)pyridine RuII complexes 1 a and 3 a for photoinduced electron transfer have been synthesized and investigated. The complexes are synthesized in a convergent manner and are isolated as linear, single isomers. Time‐resolved absorption spectroscopy reveals long‐lived, photoinduced charge‐separated states (τCSS ( 1 a )=140 ns, τCSS ( 3 a )=200 ns) formed by stepwise electron transfer. The overall yields of charge separation (≥50 % for complex 1 a and ≥95 % for complex 3 a ) are unprecedented for bis‐tridentate RuII polypyridyl complexes. This is attributed to the long‐lived excited state of the [Ru(dqp)2]2+ complex combined with fast electron transfer from the donor moiety following the initial charge separation. The rodlike arrangement of donor and acceptor gives controlled, vectorial electron transfer, free from the complications of stereoisomeric diversity. Thus, such arrays provide an excellent system for the study of photoinduced electron transfer and, ultimately, the harvesting of solar energy.  相似文献   

7.
Lithium‐ion‐encapsulated [6,6]‐phenyl‐C61‐butyric acid methyl ester fullerene (Li+@PCBM) was utilized to construct supramolecules with sulfonated meso‐tetraphenylporphyrins (MTPPS4?; M=Zn, H2) in polar benzonitrile. The association constants were determined to be 1.8×105 M ?1 for ZnTPPS4?/Li+@PCBM and 6.2×104 M ?1 for H2TPPS4?/Li+@PCBM. From the electrochemical analyses, the energies of the charge‐separated (CS) states were estimated to be 0.69 eV for ZnTPPS4?/Li+@PCBM and 1.00 eV for H2TPPS4?/Li+@PCBM. Upon photoexcitation of the porphyrin moieties of MTPPS4?/Li+@PCBM, photoinduced electron transfer occurred to produce the CS states. The lifetimes of the CS states were 560 μs for ZnTPPS4?/Li+@PCBM and 450 μs for H2TPPS4?/Li+@PCBM. The spin states of the CS states were determined to be triplet by electron paramagnetic resonance spectroscopy measurements at 4 K. The reorganization energies (λ) and electronic coupling term (V) for back electron transfer (BET) were determined from the temperature dependence of kBET to be λ=0.36 eV and V=8.5×10?3 cm?1 for ZnTPPS4?/Li+@PCBM and λ=0.62 eV and V=7.9×10?3 cm?1 for H2TPPS4?/Li+@PCBM based on the Marcus theory of nonadiabatic electron transfer. Such small V values are the result of a small orbital interaction between the MTPPS4? and Li+@PCBM moieties. These small V values and spin‐forbidden charge recombination afford a long‐lived CS state.  相似文献   

8.
A “frozen” electron donor–acceptor array that bears porphyrin and fullerene units covalently linked through the ortho position of a phenyl ring and the nitrogen of a pyrrolidine ring, respectively, is reported. Electrochemical and photophysical features suggest that the chosen linkage supports both through‐space and through‐bond interactions. In particular, it has been found that the porphyrin singlet excited state decays within a few picoseconds by means of a photoinduced electron transfer to give the rapid formation of a long‐lived charge‐separated state. Density functional theory (DFT) calculations show HOMO and LUMO to be localized on the electron‐donating porphyrin and the electron‐accepting fullerene moiety, respectively, at this level of theory. More specifically, semiempirical molecular orbital (MO) configuration interaction (CI) and unrestricted natural orbital (UNO)‐CI methods shed light on the nature of the charge‐transfer states and emphasize the importance of the close proximity of donor and acceptor for effective electron transfer.  相似文献   

9.
10.
The first donor–acceptor species in which a strongly emissive N‐annulated perylene dye is connected to a methylviologen electron acceptor unit via its macrocyclic nitrogen atom, is prepared by a stepwise, modular procedure. The absorption spectra, redox behavior, spectroelectrochemistry and photophysical properties of this dyad and of its model species are investigated, also by pump–probe fs transient absorption spectroscopy. Photoinduced oxidative electron transfer from the excited state of the dyad, centered on the N‐annulated perylene subunit, to the appended methyviologen electron acceptor takes place in a few ps. The charge‐separated species recombines in 19 ps. Our results indicate that N‐annulated perylene can be connected to functional units by taking advantage of the macrocyclic nitrogen, an option never used until now, without losing their properties, so opening the way to new designing approaches.  相似文献   

11.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

12.
The decakis(trifluoromethyl)fullerene C1‐C70(CF3)10, in which the CF3 groups are arranged on a para7‐meta‐para ribbon of C6(CF3)2 edge‐sharing hexagons, and which has now been prepared in quantities of hundreds of milligrams, was reacted under standard Bingel–Hirsch conditions with a bis‐π‐extended tetrathiafulvalene (exTTF) malonate derivative to afford a single exTTF2–C70(CF3)10 regioisomer in 80 % yield based on consumed starting material. The highly soluble hybrid was thoroughly characterized by using 1D 1H, 13C, and 19F NMR, 2D NMR, and UV/Vis spectroscopy; matrix‐assisted laser desorption ionization (MALDI) mass spectrometry; and electrochemistry. The cyclic voltammogram of the exTTF2–C70(CF3)10 dyad revealed an irreversible second reduction process, which is indicative of a typical retro‐Bingel reaction; whereas the usual phenomenon of exTTF inverted potentials (${E{{1\hfill \atop {\rm ox}\hfill}}}$ >${E{{2\hfill \atop {\rm ox}\hfill}}}$ ), resulting in a single, two‐electron oxidation process, was also observed. Steady‐state and time‐resolved photolytic techniques demonstrated that the C1‐C70(CF3)10 singlet excited state is subject to a rapid electron‐transfer quenching. The resulting charge‐separated states were identified by transient absorption spectroscopy, and radical pair lifetimes of the order of 300 ps in toluene were determined. The exTTF2–C70(CF3)10 dyad represents the first example of exploitation of the highly soluble trifluoromethylated fullerenes for the construction of systems able to mimic the photosynthetic process, and is therefore of interest in the search for new materials for photovoltaic applications.  相似文献   

13.
14.
The unprecedented dependence of final charge separation efficiency as a function of donor–acceptor interaction in covalently‐linked molecules with a rectilinear rigid oligo‐p‐xylene bridge has been observed. Optimization of the donor–acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge‐separated state to the ground state, yielding the final long‐lived, triplet charge‐separated state with circa 100 % efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.  相似文献   

15.
16.
Cup‐shaped nanocarbons (CNC) generated by the electron‐transfer reduction of cup‐stacked carbon nanotubes have been functionalized with porphyrins (H2P) as light‐capturing chromophores. The resulting donor–acceptor nanohybrid has been characterized by thermogravimetric analysis (TGA), Raman and IR spectroscopy, transmission electron microscopy, elemental analysis, and UV/Vis spectroscopy. The weight of the porphyrins attached to the cup‐shaped nanocarbons was determined as 20 % by TGA and elemental analysis. The UV/Vis absorption spectrum of CNC? (H2P)n in DMF agrees well with that obtained by the superposition of reference porphyrin (ref‐H2P) and cup‐shaped nanocarbons. The photoexcitation of the CNC? (H2P)n nanohybrid results in formation of the charge‐separated (CS) state to attain the longest CS lifetime (0.64±0.01 ms) ever reported for donor–acceptor nanohybrids, which may arise from efficient electron migration following the charge separation. The formation of a radical ion pair was detected directly by electron spin resonance (ESR) measurements under photoirradiation of CNC? (H2P)n with a high‐pressure mercury lamp in frozen DMF at 153 K. The observed ESR signal at g=2.0044 agrees with that of ref‐H2P.+ produced by one‐electron oxidation with [Ru(bpy)3]3+ in deaerated CHCl3, indicating the formation of H2P.+. The electron‐acceptor ability of the reference CNC compound (ref‐CNC) was also examined by the electron‐transfer reduction of ref‐CNC by a series of semiquinone radical anions.  相似文献   

17.
Two water‐soluble para‐xylylene‐connected 4,4′‐bipyridinium (BIPY2+) polymers have been prepared. UV‐Vis absorption, 1H NMR spectroscopy, and cyclic voltammetry experiments support that in water the BIPY2+ units in the polymers form stable 1:1 charge‐transfer complexes with tetrathiafulvalene (TTF) guests that bear two or four carboxylate groups. These charge‐transfer complexes are stabilized by the donor–acceptor interaction between electron‐rich TTF and electron‐deficient BIPY2+ units and electrostatic attraction between the dicationic BIPY2+ units and the anionic carboxylate groups attached to the TTF core. On the basis of UV‐Vis experiments, a lower limit to the apparent association constant of the TTF?BIPY2+ complexes of the mixtures, 1.8×106 m ?1, has been estimated in water. Control experiments reveal substantially reduced binding ability of the neutral TTF di‐ and tetracarboxylic acids to the BIPY2+ molecules and polymers. Moreover, the stability of the charge‐transfer complexes formed by the BIPY2+ units of the polymers are considerably higher than that of the complexes formed between two monomeric BIPY2+ controls and the dicarboxylate‐TTF donor; this has been attributed to the mutually strengthened electron‐deficient nature of the BIPY2+ units of the polymers due to the electron‐withdrawing effect of the BIPY2+ units.  相似文献   

18.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

19.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号