首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

2.
Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox‐active polyelectrolyte–surfactant complex containing [Os(bpy)2Clpy]2+ (bpy=2,2′‐bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron‐transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing‐incidence small‐angle X‐ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz‐crystal microbalance with dissipation (QCM‐D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron‐transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five‐fold increase in current response to glucose compared with analogous supramolecular AuNP‐free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron‐transfer process.  相似文献   

3.
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug‐resistant bacteria (MDRB), by using current market‐existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn‐shaped iron magnetic core–gold plasmonic shell nanotechnology‐driven approach for targeted magnetic separation and enrichment, label‐free surface‐enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the “lightning‐rod effect”, the core–shell popcorn‐shaped gold‐nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody‐conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal‐lysis experiment, by using 670 nm light at 1.5 W cm?2 for 10 min, results in selective and irreparable cellular‐damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label‐free SERS imaging, and photothermal destruction of MDRB by using the popcorn‐shaped magnetic/plasmonic nanotechnology.  相似文献   

4.
Developing gold nanoparticles (AuNPs) with well‐designed functionality is highly desirable for boosting the performance and versatility of inorganic–organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4‐piperazinyl‐1,8‐naphthalimide‐functionalized AuNPs for the realization of quantitative recognition of FeIII ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity‐controlled chelation‐mode transformation of the piperazinyl moiety on the AuNPs towards FeIII, thereby resulting in an aggregation–dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation–dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.  相似文献   

5.
Imprinting nanoparticles : Core‐shell bovine hemoglobin (BHb) imprinted magnetic nanoparticles (MNPs) with a mean diameter of 210 nm have been synthesized for the first time. The imprinted magnetic nanoparticles could easily reach the adsorption equilibrium and magnetic separation under an external magnetic field, thus avoiding problems related to the bulk polymer.

  相似文献   


6.
Cationic gold nanoparticles offer intriguing opportunities as drug carriers and building blocks for self‐assembled systems. Despite major progress on gold nanoparticle research in general, the synthesis of cationic gold particles larger than 5 nm remains a major challenge, although these species would give a significantly larger plasmonic response compared to smaller cationic gold nanoparticles. Herein we present the first reported synthesis of cationic gold nanoparticles with tunable sizes between 8–20 nm, prepared by a rapid two‐step phase‐transfer protocol starting from simple citrate‐capped particles. These cationic particles form ordered self‐assembled structures with negatively charged biological components through electrostatic interactions.  相似文献   

7.
8.
Attractive combination: Biopolymer‐modified nanoparticles which combine magnetic properties with biocompatibility are prepared and delivered following a three‐step strategy (see figure): i) Adsorption of thiol‐capped metal nanoparticles on graphite, ii) electrochemical modification, iii) potential‐induced delivery of the modified nanoparticles to the electrolyte.

  相似文献   


9.
10.
11.
The effects of axial ligands on electron‐transfer and proton‐coupled electron‐transfer reactions of mononuclear nonheme oxoiron(IV) complexes were investigated by using [FeIV(O)(tmc)(X)]n+ ( 1 ‐X) with various axial ligands, in which tmc is 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane and X is CH3CN ( 1 ‐NCCH3), CF3COO? ( 1 ‐OOCCF3), or N3? ( 1 ‐N3), and ferrocene derivatives as electron donors. As the binding strength of the axial ligands increases, the one‐electron reduction potentials of 1 ‐X (Ered, V vs. saturated calomel electrode (SCE)) are more negatively shifted by the binding of the more electron‐donating axial ligands in the order of 1 ‐NCCH3 (0.39) > 1 ‐OOCCF3 (0.13) > 1 ‐N3 (?0.05 V). Rate constants of electron transfer from ferrocene derivatives to 1 ‐X were analyzed in light of the Marcus theory of electron transfer to determine reorganization energies (λ) of electron transfer. The λ values decrease in the order of 1 ‐NCCH3 (2.37) > 1 ‐OOCCF3 (2.12) > 1 ‐N3 (1.97 eV). Thus, the electron‐transfer reduction becomes less favorable thermodynamically but more favorable kinetically with increasing donor ability of the axial ligands. The net effect of the axial ligands is the deceleration of the electron‐transfer rate in the order of 1 ‐NCCH3 > 1 ‐OOCCF3 > 1 ‐N3. In sharp contrast to this, the rates of the proton‐coupled electron‐transfer reactions of 1 ‐X are markedly accelerated in the presence of an acid in the opposite order: 1 ‐NCCH3 < 1 ‐OOCCF3 < 1 ‐N3. Such contrasting effects of the axial ligands on the electron‐transfer and proton‐coupled electron‐transfer reactions of nonheme oxoiron(IV) complexes are discussed in light of the counterintuitive reactivity patterns observed in the oxo transfer and hydrogen‐atom abstraction reactions by nonheme oxoiron(IV) complexes (Sastri et al. Proc. Natl. Acad. Sci. U.S.A. 2007 , 104, 19 181–19 186).  相似文献   

12.
Excited‐state intramolecular proton transfer (ESIPT) is a particularly well known reaction that has been very little studied in magnetic environments. In this work, we report on the photophysical behavior of a known ESIPT dye of the benzothiazole class, when in solution with uncoated superparamagnetic iron oxide nanoparticles, and when grafted to silica‐coated iron oxide nanoparticles. Uncoated iron oxide nanoparticles promoted the fluorescence quenching of the ESIPT dye, resulting from collisions during the lifetime of the excited state. The assembly of iron oxide nanoparticles with a shell of silica provided recovery of the ESIPT emission, due to the isolation promoted by the silica shell. The silica network gives protection against the fluorescence quenching of the dye, allowing the nanoparticles to act as a bimodal (optical and magnetic) imaging contrast agent with a large Stokes shift.  相似文献   

13.
14.
15.
A quadruple‐responsive nanocomposite that responds to temperature, pH, magnetic field, and NIR is obtained by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and gold nanorods (AuNRs) into a dextran‐based smart copolymer network. The dual‐sensitive copolymer is prepared by sequential RAFT polymerization of methacrylic acid and N‐isopropylacrylamide from trithiocarbonate groups linked to dextran in one pot. These functionalized nanocomposites with superior stability can respond to the four stimuli mentioned above well. As evidenced by UV–vis and TEM measurements, the temperature‐induced unusual blue‐shift in the longitudinal plasmon band is possibly due to the side‐to‐side assembly of AuNRs.  相似文献   

16.
Understanding the fundamental relationship between the size and the structure of electrode materials is essential to design catalysts and enhance their activity. Therefore, spherical gold nanoparticles (GNSs) with a mean diameter from 4 to 15 nm were synthesized. UV/Vis spectroscopy, transmission electron microscopy, and under‐potential deposition of lead (UPDPb) were used to determine the morphology, size, and surface crystallographic structure of the GNSs. The UPDPb revealed that their crystallographic facets are affected by their size and the growth process. The catalytic properties of these GNSs toward glucose electrooxidation were studied by cyclic voltammetry, taking into account the scan rate and temperature effects. The results clearly show the size‐dependent electrocatalytic activity for glucose oxidation reactions that are controlled by diffusion. Small GNSs with an average size of 4.2 nm exhibited high catalytic activity. This drastic increase in activity results from the high specific area and reactivity of the surface electrons induced by their small size. The reaction mechanism was investigated by in situ Fourier transform infrared reflectance spectroscopy. Gluconolactone and gluconate were identified as the intermediate and the final reaction product, respectively, of the glucose electrooxidation.  相似文献   

17.
Ultrafast discharge of a single‐electron capacitor: A variety of intramolecular electron‐transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single‐electron events. (et=electron transfer, cr=charge recombination, csr=charge‐shift reaction, PER=perylene, POM=polyoxometalate).

  相似文献   


18.
Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron‐deficient quinones are used. We have successfully employed HBD‐coupled electron transfer as a strategy to activate electron‐deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone‐mediated model synthetic transformation.  相似文献   

19.
以细胞色素c(Cyt c)为模型蛋白,采用表面增强红外吸收光谱监测了三明治结构所吸附的纳米金对氧化还原诱导的Cyt c表面增强红外差谱的改变.研究表明,在单层Cyt c分子表面组装纳米金,使得血红素的红外差谱特征峰明显增强,这归因于纳米金和血红素之间的电子传递.纳米金与Cyt c氧化还原活性中心血红素的相互作用加速了蛋白质的电子传递.这为实现并优化表面吸附蛋白质的直接电化学提供了一种新技术.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号