首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles.  相似文献   

2.
Colorless nonfluorescent chlorophyll (Chl) catabolites (NCCs) are formyloxobilin‐type phyllobilins, which are considered the typical products of Chl breakdown in senescent leaves. However, in degreened leaves of some plants, dioxobilin‐type Chl catabolites (DCCs) predominate, which lack the formyl group of the NCCs, and which arise from Chl catabolites by oxidative removal of the formyl group by a P450 enzyme. Here a structural investigation of the DCCs in the methylesterase16 mutant of Arabidopsis thaliana is reported. Eight new DCCs were identified and characterized structurally. Strikingly, three of these DCCs carry stereospecifically added hydroxymethyl groups, and represent bilin‐type linear tetrapyrroles with an unprecedented modification. Indeed, DCCs show a remarkable structural parallel, otherwise, to the bilins from heme breakdown.  相似文献   

3.
1‐Formyl‐19‐oxobilin‐type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19‐dioxobilin‐type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild‐type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs.  相似文献   

4.
In senescent leaves, chlorophyll typically is broken down to colorless and essentially photo‐inactive phyllobilanes, which are linear tetrapyrroles classified as “nonfluorescent” chlorophyll catabolites (NCCs) and dioxobilane‐type NCCs (DNCCs). In homogenates of senescent leaves of the tropical evergreen Spathiphyllum wallisii, when left at room temperature and extracted with methanol, the major endogenous, naturally formed NCC was regio‐ and stereoselectively oxidized (in part) to a mixture of its 15‐hydroxy and 15‐methoxy derivative. In the absence of methanol in the extract, only the 15‐OH‐NCC was observed. The endogenous oxidation process depended upon molecular oxygen. It was inhibited by carbon monoxide, as well as by keeping the leaf homogenate and extract at low temperatures. The remarkable “oxidative activity” was inactivated by heating the homogenate for 10 min at 70 °C. Upon addition of a natural epimeric NCC (epiNCC) to the homogenate of senescent or green Sp. wallisii leaves at room temperature, the exogenous epiNCC was oxidized regio‐ and stereoselectively to 15‐OH‐epiNCC and 15‐OMe‐epiNCC. The identical two oxidized epiNCCs were also obtained as products of the oxidation of epiNCC with dicyanodichlorobenzoquinone (DDQ). Water elimination from 15‐OH‐epiNCC occurred readily and gave a known “yellow” chlorophyll catabolite (YCC). The endogenous oxidation process, described here, may represent the elusive natural path from the colorless NCCs to yellow and pink coloured phyllobilins, which were found in (extracts of) some senescent leaves.  相似文献   

5.
In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

6.
Summary. In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

7.
Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated.  相似文献   

8.
In senescent leaves chlorophyll (Chl) catabolites typically accumulate as colorless tetrapyrroles, classified as formyloxobilin-type (or type-I) or dioxobilin-type (type-II) phyllobilins (PBs). Yellow type-I Chl catabolites (YCCs) also occur in some senescent leaves, in which they are generated by oxidation of colorless type-I PBs. A yellow type-II PB was recently proposed to occur in extracts of fall leaves of grapevine (Vitis vinifera), tentatively identified by its mass and UV/Vis absorption characteristics. Here, the first synthesis of a yellow type-II Chl catabolite (DYCC) from its presumed natural colorless type-II precursor is reported. A homogenate of a Spatiphyllum wallisii leaf was used as “green” means of effective and selective oxidation. The synthetic DYCC was fully characterized and identified with the yellow grapevine leaf pigment. As related yellow type-I PBs do, the DYCC functions as a reversible photoswitch by undergoing selective photo-induced Z/E isomerization of its C15=C16 bond.  相似文献   

9.
Fall leaves of the common wych elm tree (Ulmus glabra) were studied with respect to chlorophyll catabolites. Over a dozen colorless, non‐fluorescent chlorophyll catabolites (NCCs) and several yellow chlorophyll catabolites (YCCs) were identified tentatively. Three NCC fractions were isolated and their structures were characterized by spectroscopic means. Two of these, Ug‐NCC‐27 and Ug‐NCC‐43, carried a glucopyranosyl appendage. Ug‐NCC‐53, the least polar of these NCCs, was identified as the formal product of an intramolecular esterification of the propionate and primary glucopyranosyl hydroxyl groups of Ug‐NCC‐43. Thus, the glucopyranose moiety and three of the pyrrole units of Ug‐NCC‐53 span a 20‐membered ring, installing a bicyclo[17.3.1]glycoside moiety. This structural motif is unprecedented in heterocyclic natural products, according to a thorough literature search. The remarkable, three‐dimensional bicyclo[17.3.1]glycoside architecture reduces the flexibility of the linear tetrapyrrole. This feature of Ug‐NCC‐53 is intriguing, considering the diverse biological effects of known bicyclo[n.3.1]glycosidic natural products.  相似文献   

10.
In extracts of senescent leaves of spinach (Spinacia oleracea) that had degreened naturally after the onset of flowering, four colorless compounds, which had characteristic UV/VIS properties of nonfluorescent chlorophyll catabolites (NCCs), were detected by HPLC. From the extracts of 58.7 g of senescent leaves of Sp. oleracea, a two‐stage HPLC purification procedure provided ca. 15 μmol of So‐NCC‐2, the most abundant polar NCC in the leaves of this vegetable. So‐NCC‐2 was isolated as a slightly yellow powder and analyzed by spectroscopic means. The high‐resolution mass spectra indicated that So‐NCC‐2 has the same molecular formula as Hv‐NCC‐1 from barley (Hordeum vulgare), the first non‐green chlorophyll catabolite from a higher plant to be structurally analyzed. Homo‐ and hetero‐nuclear NMR spectroscopy indicated So‐NCC‐2 to have the same constitution as its epimer Hv‐NCC‐1, and to differ from the latter by the configuration at C(1). The catabolite from spinach could be identified with one of the products from OsO4 dihydroxylation at the vinyl group of the main NCC from Cercidiphyllum japonicum. Chlorophyll breakdown in spinach and in C. japonicum apparently involves an enzyme‐catalyzed reduction that occurs with the same stereochemical sense at C(1), but opposite to that in barley.  相似文献   

11.
Chlorophyll breakdown in higher plants occurs by the so called “PaO/phyllobilin” path. It generates two major types of phyllobilins, the characteristic 1‐formyl‐19‐oxobilins and the more recently discovered 1,19‐dioxobilins. The hypothetical branching point at which the original 1‐formyl‐19‐oxobilins are transformed into 1,19‐dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19‐dioxobilin‐type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19‐dioxobilin that accumulated in fully senescent leaves.  相似文献   

12.
The primary fluorescent chlorophyll catabolite 1 (Ca‐FCC‐2) from sweet pepper (Capsicum annuum) has similar optical properties, but is slightly less polar than the primary FCC (pFCC; 2 ) from senescent cotyledons of oilseed rape (Brassica napus). Ca‐FCC‐2 was prepared from pheophorbide a using an enzyme extract from ripe C. annuum chromoplasts. The catabolite Ca‐FCC‐2 ( 1 ) could be determined from fast‐atom‐bombardment (FAB) mass spectra to be an isomer of pFCC ( 2 ). The constitution of Ca‐FCC‐2 was determined by homo‐ and heteronuclear magnetic‐resonance experiments and was found to be identical to that of pFCC. Further 2D‐homonuclear spectra of Ca‐FCC‐2 revealed it to differ from pFCC by the configuration at the methine atom C(1), whose configuration results from the action of red chlorophyll catabolite reductase (RCCR). The occurrence of two primary FCCs that are epimeric at C(1) provides a structural basis for the recent observation of two types of RCCRs among higher plants.  相似文献   

13.
The experiments leading to the isolation and to the elucidation of the constitution of Bn-NCC-1, a colourless non-fluorescent chlorophyll catabolite from senescent cotyledons of rape (Brassica napus L.), are described. A series of fast-atom-bombardment (FAB) mass and 1H- and 13C-NMR spectral experiments are used to determine the constitution of the catabolite Bn-NCC-1. The structural information available indicates Bn-NCC-1 to be a 1-formyl-19-oxobilane, structurally related to ‘RP 14’, isolated earlier from artificially aged primary leaves of barley. The major differences between the constitution of the metal-free chlorophyll pheophorbide a and that of Bn-NCC-1 concern oxygenolytic opening of the porphinoid macrocycle at C(4)? C(5), saturation at the other meso positions, hydrolysis of the methyl-ester function, and functionalization by a malonic-acid unit of the side chain at C(8). This work provides for the first time the structural data of a chlorophyll-degradation product from senescent plant leaves formed under normal growth conditions.  相似文献   

14.
REGULATION OF CHLOROPLAST DEVELOPMENT BY RED AND BLUE LIGHT   总被引:3,自引:0,他引:3  
There are specific differences between red and blue light greening of etiolated seedlings of Hordevm vulgare L. Blue light results in a different prenyl lipid composition of chloroplast as compared to red light of equal quanta density. This is documented by a much higher prenylquinone content, higher chlorophyll a/b ratios, and lower values for the ratio xanthophylls to carotenes (x/c). The photosynthetic activity of “blue light” chloroplasts (Hill reaction) is higher than that of “red light” chloroplasts. These differences in prenylquinone composition and Hill-activity are associated with a different ultrastructure of chloroplasts. “Red light” chloroplasts exhibit a much higher grana content than “blue light” chloroplasts. The difference in thylakoid composition, photosynthetic activity and chloroplast structure found between blue and red light greening are similar to those found between sun and shade leaves and those between plants grown under high and low light intensities.  相似文献   

15.
Using ab initio calculation, structural stability, including electronic properties of bare/hydrogenated stanene (BSn/HSn) nanosheet, was explored. The geometrical stability of HSn material is verified with the influence of phonon band structure and formation energy. The concentration of the present work is to check the quality of Musa acuminata (banana) fruits when it is in ripe and overripe stage using HSn nanosheet material. Further, the interaction of different volatile organic compounds, namely, isoamyl acetate, isobutyl acetate, acetoin, and 2,3-butanediol aromas on HSn base material is studied with the significant parameter such as Bader charge transfer, band gap, adsorption energy, and average energy band gap changes. The sensitivity of the aromas emitting from ripe and overripe stages of banana on HSn nanosheet was studied using density of states spectrum. The adsorption energy of HSn nanosheet is found in the range of ??0.055 to ??0.989 eV upon the interaction VOCs of Musa acuminata. The novel aspect of the present work is to check the quality of Musa acuminata with the influence of HSn nanosheet using density functional theory.  相似文献   

16.
The stomatal physiology, chlorophyll distribution and photosynthetic activity of somatic embryo (SE)- and seedling-derived peanut plants grown in vitro (test tube-grown) and extra vitrum (soil-grown) are investigated using scanning electrochemical microscopy (SECM). This SECM imaging is performed in two different feedback modes, corresponding to oxygen evolution and chlorophyll distribution. More specifically, the oxygen evolution profiles of the in vitro leaves indicate important differences in leaf anatomy between the SE- and seedling-derived leaves. On the other hand, the chlorophyll distribution images show individual stomata of size ca. 27 ± 5μm. Further studies on senescing (aged) leaves reveal interesting voltammograms that vary widely over the stomatal complexes and the surrounding tissues, probably due to the release of electroactive metabolites during chlorophyll breakdown when the leaves turn yellow. Thus, the present investigation could open up new opportunities for characterizing botanical systems using electroanalytical techniques. In addition, it could provide further insights into various areas of current relevance, including signal transduction, cell fate/differentiation and developmental biology. Schematic representation of SECM imaging used in this investigation. The SECM probe is a Pt UME disk (25 μm diameter) embedded in an insulating glass sheath so that the ratio of the diameter of the death to that of the electrode surface (RG) is 7. RE denotes the reference electrode Ag/AgCl, sat. KCl and CE refers to the counter electrode, a Pt wire. Oxygen evolving from the leaf surface during photosynthesis diffuses into the electrolyte (0.1 M KCl) and gets reduced at the Pt UME, biased to a potential of −0.5 V, at a diffusion-limited rate to produce a change in the tip-current  相似文献   

17.
Absorption spectra and fluorescence spectra are essential for use across the photosciences, yet such spectra along with the all‐important values for molar absorption coefficient (ε) and fluorescence quantum yield (Φf) often are found with great difficulty. Here, a literature survey concerning the vital class of chlorophyll compounds has led to identification of spectra for 150 members. Spectra in print form have been digitized (with baseline corrections) and assembled into a database along with literature references, solvent identity and values for ε and Φf (where available). The database encompasses photosynthetic tetrapyrroles wherein the chromophore is a porphyrin (e.g. chlorophyll c1, protochlorophyll a), chlorin (e.g. chlorophyll a, bacteriochlorophyll c) or bacteriochlorin (e.g. bacteriochlorophyll a). Altogether, the database contains 305 absorption spectra (from 19 porphyrins, 109 chlorins and 22 bacteriochlorins) and 72 fluorescence spectra (from 10 porphyrins, 30 chlorins and 4 bacteriochlorins). The spectral database should facilitate comparisons and quantitative calculations. All spectra are available in print form in the Supporting Information. The entire database in digital form is available with the PhotochemCAD program for free downloading and further use at http://www.photochemcad.com .  相似文献   

18.
This study was aimed to study the chemodiversity of flavonoids in the Formosan Litsea and Neolitsea plants. Applications of LC‐SPE‐NMR and LC/MS hyphenated techniques in analyzing polar constituents from the leaves of L. acuminata, L. hypophaea, N. acuminatissima, and N. konishii led to the identification of 13 known flavonoids and one new flavonol dioside, quercetin 3‐O‐(2‐O‐β‐D ‐apiofuranosyl)‐α‐L ‐rhamnopyranoside. The quantity and variety of flavonoid composition in the leaves of 12 Litsea and Neolitsea plants were examined to enable more effective utilization of such bioactive ingredients. Of these, N. acuminatissima was found to contain the most quantity of flavonoids (ca. 0.24%leaves).  相似文献   

19.
S.M. Wu  C.A. Rebeiz 《Tetrahedron》1984,40(4):659-664
The divinyl structure of protochlorophyllide (E443 F625) and of its chlorophyllide a (E458 F674) photoreduction product was ascertained by nuclear magnetic resonance spectroscopy and by fast atom bombardment mass spectroscopy. These two phorbins are two newly discovered intermediates of the chlorophyll a biosynthetic pathway in higher plants. Both tetrapyrroles exhibited recognizable ABX spin-spin splitting patterns which ar characteristic of divinyl tetrapyrroles. Fast atom bombardment mass spectroscopic data further confirmed the presence of two vinyl groups per molecule of protochlorophyllide (E443 F625) and of chlorophyllide a (E458 F674).  相似文献   

20.
Up to four different outcomes have been found for the reaction between 1‐oxy‐ortho‐quinodimethanes (oQDMs) and alkoxy alkynyl Fischer carbene complexes (FCCs). The product formed depends on the structure of both reagents and on the reaction solvent. The pathways can be topologically classified as a [4C+2C], a [3(2C+O)+3C], and two different [4C+3C] processes and, in all these sequences, 1‐oxy‐oQDMs behave as enolates or as vinylogous enolates. The reaction of Choy and Yang’s unsubstituted oQDM 1 with tungsten alkynyl FCCs is solvent controlled; thus, selective formation of benzocycloheptenones can be achieved in THF, whereas exclusive synthesis of benzocycloheptene ketals is reached in diethyl ether. On the other hand, THF is the solvent of choice to form benzocycloheptene ketals when an alkyl or aryl group is placed at position 1 of the oQDM in its reaction with tungsten carbene complexes; however, a pyranylidene carbene complex is formed when a chromium carbene complex is used. Alternatively, the presence of bulky alkoxy groups in the FCC component favours a Diels–Alder aromatisation sequence, which leads to 1‐naphthyl FCCs. Furthermore, the isolation and the characterisation of several deuterated compounds by labelling experiments have provided some insight into the reaction pathways, and mechanisms consistent with those findings have been established and several reaction intermediates have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号