共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dr. Igor O. Koshevoy Yuh‐Chia Chang Dr. Antti J. Karttunen Julia R. Shakirova Prof. Janne Jänis Prof. Matti Haukka Prof. Tapani Pakkanen Prof. Pi‐Tai Chou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(16):5104-5112
A new series of homoleptic alkynyl complexes, [{Au2Cu2(C2R)4}n] (R=C3H7O ( 1 ), C6H11O ( 2 ), C9H19O ( 3 ), C13H11O ( 4 )), were obtained from Au(SC4H8)Cl, Cu(NCMe)4PF6, and the corresponding alkyne in the presence of a base (NEt3). Complexes 1 – 4 aggregate upon crystallization into polymeric chains through extensive metallophilic interactions. The cluster that contains fluorenolyl functionalities, C13H9O ( 5 ), crystallizes in its molecular form as a disolvate, [Au2Cu2(C2C13H9O)4] ? 2 THF. The substitution of weakly bound THF molecules with pyridine molecules leads to the complex [Au2Cu2(C2C13H9O)4] ? 2 py ( 6 ), thus giving two polymorphs in the solid state. Such structural diversity is established through metal‐chain and hydrogen‐bond formation, which depends on the stereochemical characteristics of the organic ligands. More interestingly, this solid‐state structural arrangement affords good emission properties, such as intensity and spectroscopic profile, which are otherwise very weakly emissive in solution. Metallophilic aggregation of the {Au2Cu2} cluster units, as observed in the crystals, results in dramatic enhancement of the room‐temperature phosphorescence, thereby reaching a maximum quantum efficiency of 95 % ( 4 ). A theoretical approach further indicates a synergistic effect of the array of the metal chain upon aggregation, which greatly enhances the spin‐orbit coupling and, hence, the phosphorescence, thereby opening up a new direction in the field of aggregate‐enhanced emission. 相似文献
3.
4.
Dr. Jean A. Wyer Anders V. Jørgensen Bjarke Møller Pedersen Prof. Steen Brøndsted Nielsen 《Chemphyschem》2013,14(18):4109-4113
Weakly bound complexes between ferric heme cations and NO were synthesised in the gas phase from ion–molecule reactions, and their absorption measured based on photodissociation yields. The Soret band, which serves as an important marker band for heme‐protein spectroscopy, is maximal at 357±5 nm and significantly blue‐shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q‐band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily through loss of NO. In contrast to the Q‐band region, two‐photon absorption was seen in the Soret band despite NO loss only requiring ~1 eV. A model based on intersystem crossing to a long‐lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption maxima of heme and its complexes with amino acids and NO. 相似文献
5.
Dr. Natarajan Senthilkumar Dr. Kanniyappan Parthasarathy Dr. Parthasarathy Gandeepan Prof. Dr. Chien‐Hong Cheng 《化学:亚洲杂志》2013,8(9):2175-2181
An efficient method for the one‐pot synthesis of substituted phenanthridinone derivatives from N‐methoxybenzamides and aryltriethoxysilanes through rhodium‐catalyzed dual C? H bond activation and annulation reactions is described. A double‐cycle mechanism is proposed to account for this catalytic reaction. In addition, isotope‐labeling studies were performed to understand the intimate mechanism of the reaction. 相似文献
6.
Henrike Gehring Ramona Metzinger Christian Herwig Julia Intemann Prof. Dr. Sjoerd Harder Prof. Dr. Christian Limberg 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(5):1629-1636
After the lithiation of PYR‐H2 (PYR2?=[{NC(Me)C(H)C(Me)NC6H3(iPr)2}2(C5H3N)]2?), which is the precursor of an expanded β‐diketiminato ligand system with two binding pockets, its reaction with [NiBr2(dme)] led to a dinuclear nickel(II)–bromide complex, [(PYR)Ni(μ‐Br)NiBr] ( 1 ). The bridging bromide ligand could be selectively exchanged for a thiolate ligand to yield [(PYR)Ni(μ‐SEt)NiBr] ( 3 ). In an attempt to introduce hydride ligands, both compounds were treated with KHBEt3. This treatment afforded [(PYR)Ni(μ‐H)Ni] ( 2 ), which is a mixed valent NiI? μ‐H? NiII complex, and [(PYR‐H)Ni(μ‐SEt)Ni] ( 4 ), in which two tricoordinated NiI moieties are strongly antiferromagnetically coupled. Compound 4 is the product of an initial salt metathesis, followed by an intramolecular redox process that separates the original hydride ligand into two electrons, which reduce the metal centres, and a proton, which is trapped by one of the binding pockets, thereby converting it into an olefin ligand on one of the NiI centres. The addition of a mild acid to complex 4 leads to the elimination of H2 and the formation of a NiIINiII compound, [(PYR)Ni(μ‐SEt)NiOTf] ( 5 ), so that the original NiII(μ‐SEt)NiIIX core of compound 3 is restored. All of these compounds were fully characterized, including by X‐ray diffraction, and their molecular structures, as well as their formation processes, are discussed. 相似文献
7.
Hua Cao Prof. Huanfeng Jiang Prof. Gaoqing Yuan Zhengwang Chen Chaorong Qi Huawen Huang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(34):10553-10559
The formation of carbon–carbon and carbon–oxygen bonds continues to be an active and challenging field of chemical research. Nanoparticle catalysis has attracted considerable attention owing to its environmentally benign and high activity toward the reactions. Herein, we described a novel and effective nano‐Cu2O‐catalyzed one‐pot domino process for the regioselective synthesis of α‐carbonyl furans. Various electron‐deficient alkynes with 2‐yn‐1‐ols underwent this process smoothly in moderate to good yields in the presence of air at atmospheric pressure. It is especially noteworthy that a novel 2,4,5‐trisubstituted 3‐ynylfuran was formed in an extremely direct manner without tedious stepwise synthesis. Additionally, as all of the starting materials are readily available, this method may allow the synthesis of more complex α‐carbonyl furans. An experiment to elucidate the mechanism suggested that the process involved a carbene intermediate. 相似文献
8.
Tingting Li Dr. Masayoshi Nishiura Dr. Jianhua Cheng Prof. Dr. Yang Li Prof. Dr. Zhaomin Hou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(47):15079-15085
The reactivity of the cubane‐type rare‐earth methylidene complex [Cp′Lu(μ3‐CH2)]4 ( 1 , Cp′=C5Me4SiMe3) with various unsaturated electrophiles was investigated. The reaction of 1 with CO (1 atm) at room temperature gave the bis(ketene dianion)/dimethylidene complex [Cp′4Lu4(μ3‐CH2)2(μ3,η2‐O‐C?CH2)2] ( 2 ) in 86 % yield through the insertion of two molecules of CO into two of the four lutetium–methylidene units. In the reaction with the sterically demanding N,N‐diisopropylcarbodiimide at 60 °C, only one of the four methylidene units in 1 reacted with one molecule of the carbodiimide substrate to give the mono(ethylene diamido)/trimethylidene complex [Cp′4Lu4(μ3‐CH2)3{iPrNC(=CH2)NiPr}] ( 3 ) in 83 % yield. Similarly, the reaction of 1 with phenyl isothiocyanate gave the ethylene amido thiolate/trimethylidene complex [Cp′4Lu4(μ3‐CH2)3{PhNC(S)=CH2}] ( 4 ). In the case of phenyl isocyanate, two of the four methylidene units in 1 reacted with four molecules of the substrate at ambient temperature to give the malonodiimidate/dimethylidene complex [Cp′4Lu4(μ3‐CH2)2{PhN=C(O)CH2(O)C?NPh}2] ( 5 ) in 87 % yield. In this reaction, each of the two lutetium–methylidene bonds per methylidene unit inserted one molecule of phenyl isocyanate. All the products have been fully characterized by NMR spectroscopy, X‐ray diffraction, and microelemental analyses. 相似文献
9.
Fe? W heterometallic complexes, in which an FeX2 (X=Cl, SPh) moiety is attached to monodithiolene oxotungsten through a sulfide bridge, that is, [Ph4P]2[Cl2Fe(S)2WOS2] ( 1 ), [Ph4P]2[Cl2Fe(S)2WOS2(DMED)] ( 2 , DMED=dimethylethylenedicarboxylate), [Ph4P]2[Cl2Fe(S)2WO(tdt)] ( 3 , tdt=toluenedithiolate), [Ph4P]2[(SPh)2Fe(S)2WO(tdt)] ( 4 ), and [Ph4P]2[Cl2Fe(S)2WO(edt)] ( 5 , edt=ethanedithiolate), are reported. Mössbauer and EPR spectroscopy, magnetism, electrochemistry, and electronic structural analysis based on DFT and TD‐DFT calculations show the transfer of electron from the iron center to the tungsten center, thus resulting in a ferromagnetically coupled FeIIIWV unit, along with antiferromagnetic intermolecular interactions, from the starting FeII and WVI compounds. A net spin of a S=3 ground state, which arises from ferromagnetically coupled FeIII and WV atoms, displays a rare X‐band EPR in normal mode at g≈7 in the solid state. 相似文献
10.
Florian Monnier Dr. Marc Taillefer Dr. 《Angewandte Chemie (International ed. in English)》2009,48(38):6954-6971
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004. 相似文献
11.
Prof. Dr. Hitoshi Miyasaka Tomokura Madanbashi Ayumi Saitoh Dr. Natsuko Motokawa Ryuta Ishikawa Prof. Dr. Masahiro Yamashita Dr. Stefan Bahr Prof. Dr. Wolfgang Wernsdorfer Dr. Rodolphe Clérac 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(13):3942-3954
A series of isostructural cyano‐bridged MnIII(h.s.)–MIII(l.s.) alternating chains, [MnIII(5‐TMAMsalen)MIII(CN)6] ? 4H2O (5‐TMAMsalen2?=N,N′‐ethylenebis(5‐trimethylammoniomethylsalicylideneiminate), MnIII(h.s.)=high‐spin MnIII, MIII(l.s.)=low‐spin CoIII, Mn? Co ; FeIII, Mn? Fe ; MnIII, Mn? Mn ; CrIII, Mn? Cr ) was synthesized by assembling [MnIII(5‐TMAMsalen)]3+ and [MIII(CN)6]3?. The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [‐MnIII‐NC‐MIII‐CN‐] repeating motif, for which the ‐NC‐MIII‐CN‐ motif is provided by the [MIII(CN)6]3? moiety adopting a trans bridging mode between [MnIII(5‐TMAMsalen)]3+ cations. The MnIII and MIII ions occupy special crystallographic positions: a C2 axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn–Teller axis of the MnIII(h.s.) ion is perpendicular to the N2O2 plane formed by the 5‐TMAMsalen tetradentate ligand. These Jahn–Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn‐Naxis‐C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter‐chain M???M distance being relatively large at 9 Å due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5‐TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn? Fe and Mn? Mn display intra‐chain ferromagnetic interactions, whereas Mn? Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single‐chain magnet (SCM) behavior of these three systems, whereas Mn? Co is merely paramagnetic with SMn=2 and D/kB=?5.3 K (D being a zero‐field splitting parameter). At low temperatures, the Mn? M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite‐chain and finite‐chain regimes for the SCM behavior. These isostructural hetero‐spin SCMs offer a unique series of alternating [‐Mn‐NC‐M‐CN‐] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits. 相似文献
12.
Elizabeth A. Jacobs Anna Fuller Simon J. Coles Graham J. Tizzard Joseph A. Wright Simon J. Lancaster 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(28):8647-8658
Treatment of Me2S ? B(C6F5)nH3?n (n=1 or 2) with ammonia yields the corresponding adducts. H3N ? B(C6F5)H2 dimerises in the solid state through N? H???H? B dihydrogen interactions. The adducts can be deprotonated to give lithium amidoboranes Li[NH2B(C6F5)nH3?n]. Reaction of the n=2 reagent with [Cp2ZrCl2] leads to disubstitution, but [Cp2Zr{NH2B(C6F5)2H}2] is in equilibrium with the product of β‐hydride elimination [Cp2Zr(H){NH2B(C6F5)2H}], which proves to be the major isolated solid. The analogous reaction with [Cp2HfCl2] gives a mixture of [Cp2Hf{NH2B(C6F5)2H}2] and the N? H activation product [Cp2Hf{NHB(C6F5)2H}]. [Cp2Zr{NH2B(C6F5)2H}2] ? PhMe and [Cp2Hf{NH2B(C6F5)2H}2] ? 4(thf) exhibit β‐B‐agostic chelate bonding of one of the two amidoborane ligands in the solid state. The agostic hydride is invariably coordinated to the outside of the metallocene wedge. Exceptionally, [Cp2Hf{NH2B(C6F5)2H}2] ? PhMe has a structure in which the two amidoborane ligands adopt an intermediate coordination mode, in which neither is definitively agostic. [Cp2Hf{NHB(C6F5)2H}] has a formally dianionic imidoborane ligand chelating through an agostic interaction, but the bond‐length distribution suggests a contribution from a zwitterionic amidoborane resonance structure. Treatment of the zwitterions [Cp2MMe(μ‐Me)B(C6F5)3] (M=Zr, Hf) with Li[NH2B(C6F5)nH3?n] (n=2) results in [Cp2MMe{NH2B(C6F5)2H}] complexes, for which the spectroscopic data, particularly 1J(B,H), again suggest β‐B‐agostic interactions. The reactions proceed similarly for the structurally encumbered [Cp′′2ZrMe(μ‐Me)B(C6F5)3] precursor (Cp′′=1,3‐C5H3(SiMe3)2, n=1 or 2) to give [Cp′′2ZrMe{NH2B(C6F5)nH3?n}], both of which have been structurally characterised and show chelating, agostic amidoborane coordination. In contrast, the analogous hafnium chemistry leads to the recovery of [Cp′′2HfMe2] and the formation of Li[HB(C6F5)3] through hydride abstraction. 相似文献
13.
Bo Sun Tatsuhiko Yoshino Motomu Kanai Shigeki Matsunaga 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2015,127(44):13160-13164
The synthesis of isoquinolines by site‐selective C H activation of O‐acyl oximes with a Cp*CoIII catalyst is described. In the presence of this catalyst, the C H activation of various unsymmetrically substituted O‐acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*CoIII system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*RhIII catalysts led to low selectivities and/or yields when unsymmetrical O‐acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C H activation step under Cp*CoIII and Cp*RhIII catalysis. 相似文献
14.
15.
Juhyeon Park Sukbok Chang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2015,127(47):14309-14313
A procedure for the [Cp*CoIII]‐catalyzed direct C H amidation of arenes with dioxazolone has been developed. This reaction proceeds under straightforward and mild conditions with a broad range of substrates, including anilides. A comparative study on the catalytic activity of Group 9 [{Cp*MCl2}2] complexes revealed the unique efficiency of the cobalt catalyst. 相似文献
16.
17.
18.
19.
Holger Helten Marianne Engeser Dr. Dietrich Gudat Prof. Dr. Reinhold Schilling Gregor Schnakenburg Martin Nieger Dr. Rainer Streubel Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(11):2602-2616
P? N bond activation of 2H‐azaphosphirene complexes 1 and 2 by using triflic acid led to ring expansion in the presence of nitriles. In the absence of nitriles, the reaction surprisingly afforded two haptomeric N‐protonated 1‐aza‐3‐phospha‐butadiene complexes in the case of complex 1 , whereas the N‐protonated 2H‐azaphosphirene complex [H‐ 2 ]+ was characterized by NMR spectroscopy.