首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The planar chiral 2‐phospha[3]ferrocenophane I has been shown to be the first efficient nucleophilic organocatalyst for the enantioselective synthesis of cyclopentenylphosphonates, through [3+2] cyclizations between diethyl allenylphosphonate and α,β‐unsaturated ketones. The same catalyst has also been applied to the highly enantioselective [3+2] cyclizations of allenic esters with dibenzylideneacetone and analogous bis‐enones, leading to functionalised cyclopentenes with either monocyclic or spirocyclic structures (ee 84–95 %). It has been shown that the residual enone functions in the resulting cyclopentenes can be involved in subsequent cyclization steps to afford unprecedented C2‐symmetric bis‐cyclopentenylketones. In order to provide insight into the behaviour of FerroPHANE I as a chiral catalyst in [3+2] cyclisations, the energetically most favoured isomers of the key phosphine‐allene adduct have been calculated by DFT methods. Factors likely to control the chiral induction process are highlighted.  相似文献   

2.
N‐Heterocyclic carbene‐catalyzed formation of β‐anionic intermediates from enones has been employed in the enantioselective synthesis of 2‐aryl propionates. The reaction was achievable using a homochiral 4‐MeOC6H4 morpholinone catalyst allowing the first example of enantioselective catalysis by umpolung of α,β‐unsaturated ketones. The reaction is high yielding, and shows robustness with reasonable generality. A mechanism is proposed in which the enantiodetermining protonation is achieved using either hexafluoroisopropanol or the formed naphthol product.  相似文献   

3.
We have developed CuII‐catalyzed enantioselective conjugate‐addition reactions of boron to α,β‐unsaturated carbonyl compounds and α,β,γ,δ‐unsaturated carbonyl compounds in water. In contrast to the previously reported CuI catalysis that required organic solvents, chiral CuII catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1 ; cat. 2: Cu(OH)2 and acetic acid with ligand L1 ; and cat. 3: Cu(OAc)2 with ligand L1 . Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β‐unsaturated carbonyl compounds and an α,β‐unsaturated nitrile compound, including acyclic and cyclic α,β‐unsaturated ketones, acyclic and cyclic β,β‐disubstituted enones, acyclic and cyclic α,β‐unsaturated esters (including their β,β‐disubstituted forms), and acyclic α,β‐unsaturated amides (including their β,β‐disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43 200 h?1) for an asymmetric conjugate‐addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ‐unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4‐Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ‐unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ‐unsaturated carbonyl compounds with compound 2 , whereas 1,4‐addition products were exclusively obtained by using cat. 2 or cat. 3, 1,6‐addition products were exclusively produced by using cat. 1. Similar unique reactivities and selectivities were also shown in the reactions of cyclic trienones. Finally, the reaction mechanisms of these unique conjugate‐addition reactions in water were investigated and we propose stereochemical models that are supported by X‐ray crystallography and MS (ESI) analysis. Although the role of water has not been completely revealed, water is expected to be effective in the activation of a borylcopper(II) intermediate and a protonation event subsequent to the nucleophilic addition step, thereby leading to overwhelmingly high catalytic turnover.  相似文献   

4.
The metal enolates, resulting from the copper-catalyzed enantioselective conjugate addition of organometallic reagents (Et2Zn or R3Al) to cyclic and acyclic enones are quantitatively trapped as enolacetates with acetic anhydride.  相似文献   

5.
Organocatalytic transfer hydrogenation of cyclic enones   总被引:1,自引:0,他引:1  
The first enantioselective organocatalytic transfer hydrogenation of cyclic enones has been accomplished. The use of iminium catalysis has provided a new organocatalytic strategy for the enantioselective reduction of beta,beta-substituted alpha,beta-unsaturated cycloalkenones, to generate beta-stereogenic cyclic ketones. The use of imidazolidinone 4 as the asymmetric catalyst has been found to mediate the hydrogenation of a large class of enone substrates with tert-butyl Hantzsch ester serving as an inexpensive source of hydrogen. The capacity of catalyst 4 to enable enantioselective transfer hydrogenation of cycloalkenones has been extended to five-, six-, and seven-membered ring systems. The sense of asymmetric induction is in complete accord with the stereochemical model first reported in conjunction with the use of catalyst 4 for enantioselective ketone Diels-Alder reactions.  相似文献   

6.
We report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.  相似文献   

7.
Asymmetric 1,4‐conjugation addition of dialkylzinc (diethylzinc and dimethylzinc) to cyclic enones, chalcone and nitroalkenes was achieved by a 25 mol% (R)‐6,6′‐Br2‐BINOL( 1f ), 25 mol% CuSPh and 100 mol% dicyclohexylmethylamin(Cy2NMe) catalyst system. The Cu(I) catalyst system enables the cyclic enone, chalcone and nitroalkene generality with high enantioselectivity (up to 84% ee) and isolated yield (up to 94%) under mild reaction conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Highly enantioselective 1,4-addition of alkenylzirconocene chlorides to α,β-enones was found to be catalyzed by a chiral rhodium complex generated from [Rh(cod)(MeCN)2]BF4 and (S)-BINAP. The reaction can be applied to either cyclic or acyclic enones and the optical yield was up to 99% ee. The reaction mechanism would involve the transmetalation between the alkenylzirconocene chloride and the rhodium complex to give the alkenylrhodium species as a key intermediate.  相似文献   

9.
A simple axially chiral amine catalyst promoted the regio‐, diastereo‐, and enantioselective conjugate addition of aldehydes to β‐tosyl enones, which serve as ynone surrogates. The adducts were readily converted by treatment with L‐selectride into less accessible enones with a γ stereogenic center. Such compounds cannot be prepared through the amine‐catalyzed conjugate addition of aldehydes to ynones. The obtained enones underwent further conjugate addition of diorganozinc compounds in the presence of a copper catalyst.  相似文献   

10.
A series of novel chiral diphosphite ligands have been synthesized from d-mannitol derivatives and chlorophosphoric acid diary ester, and were successfully employed in the copper catalyzed enantioselective conjugate addition of organozinc reagents diethylzinc and dimethylzinc to cyclic and acyclic enones. The stereochemically matched combination of d-mannitol and (R)-H8-binaphthyl in ligand 1,2:5,6-di-O-isopropylidene-3,4-bis[(R)-1,1′-H8-binaphthyl-2,2′-diyl] phosphite-d-mannitol was essential to afford 93% ee for 3-ethylcyclohexanone, 92% ee for 3-ethylcyclopentanone, and 90% ee for 3-ethylcycloheptanone in toluene, using Cu(OTf)2 as a catalytic precursor. The results clearly indicated that the chiral organocopper reagent exhibited high enantioselectivies for cyclic enones bearing different ring sizes. As for the backbone of this type of ligand, it has been demonstrated that 1,2:5,6-di-O-isopropylidene-d-mannitol was more efficient than 1,2:5,6-di-O-cyclohexylidene-d-mannitol. The sense of the enantiodiscrimination was mainly determined by the configuration of the diaryl phosphite moieties in the 1,4-addition of cyclic enones.  相似文献   

11.
In this work, we have successfully synthesized a new family of chiral Schiff base–phosphine ligands derived from chiral binaphthol (BINOL) and chiral primary amine. The controllable synthesis of a novel hexadentate and tetradentate N,O,P ligand that contains both axial and sp3‐central chirality from axial BINOL and sp3‐central primary amine led to the establishment of an efficient multifunctional N,O,P ligand for copper‐catalyzed conjugate addition of an organozinc reagent. In the asymmetric conjugate reaction of organozinc reagents to enones, the polymer‐like bimetallic multinuclear Cu? Zn complex constructed in situ was found to be substrate‐selective and a highly excellent catalyst for diethylzinc reagents in terms of enantioselectivity (up to >99 % ee). More importantly, the chirality matching between different chiral sources, C2‐axial binaphthol and sp3‐central chiral phosphine, was crucial to the enantioselective induction in this reaction. The experimental results indicated that our chiral ligand (R,S,S)‐ L1 ‐ and (R,S)‐ L4 ‐based bimetallic complex catalyst system exhibited the highest catalytic performance to date in terms of enantioselectivity and conversion even in the presence of 0.005 mol % of catalyst (S/C=20 000, turnover number (TON)=17 600). We also studied the tandem silylation or acylation of enantiomerically enriched zinc enolates that formed in situ from copper‐ L4 ‐complex‐catalyzed conjugate addition, which resulted in the high‐yield synthesis of chiral silyl enol ethers and enoacetates, respectively. Furthermore, the specialized structure of the present multifunctional N,O,P ligand L1 or L4 , and the corresponding mechanistic study of the copper catalyst system were investigated by 31P NMR spectroscopy, circular dichroism (CD), and UV/Vis absorption.  相似文献   

12.
CuI‐catalyzed enantioselective nitroso‐Diels–Alder reactions (NDA reactions) of 2‐nitrosopyridine with various dienes are presented. The [CuPF6(MeCN)4]/Walphos‐CF3 catalyst system is best suited to catalyze the NDA reaction of various dienes by using 2‐nitrosopyridine as a dienophile. In most of the cases studied, cycloadducts are obtained in quantitative yield with very good to excellent enantioselectivities. Based on DFT calculations, a model to explain the stereochemical outcome of the NDA reaction is presented. Finally, an efficient short synthesis of (?)‐peracetylated conduramine A‐1 by applying the enantioselective NDA reaction as a key step is described.  相似文献   

13.
《化学:亚洲杂志》2017,12(10):1095-1103
The synthesis of solid catalysts for the co‐catalyst‐free cycloaddition of CO2 has attracted much attention. Herein, we report a hierarchical porous organic polymer, Py‐Zn@MA, that is able to catalyze the cycloaddition reaction of epoxides and CO2 without using any additives or co‐catalyst to afford turnover frequency (TOF) values as high as 250 and 97 h−1 at 130 °C by using pure and diluted CO2 (simulating flue gas), respectively. These results are superior to those obtained from previously reported heterogeneous co‐catalyst‐free systems. The high activity of Py‐Zn@MA is mainly attributed to its bifunctional nature with ZnBr2 and pyridine activating the epoxide in a cooperative way. Notably, Py‐Zn@MA can be easily prepared on a large scale without using any catalyst and the chemicals are cost effective. Moreover, Py‐Zn@MA shows good substrate universality for the cycloaddition reactions of epoxides. Our designed porous organic polymer Py‐Zn@MA material has the potential to serve as an efficient catalyst for the direct conversion of flue gas with epoxides into value‐added cyclic carbonates.  相似文献   

14.
A highly efficient enantioselective [2+2] cycloaddition between alkynones and cyclic enol silyl ethers was developed by using a chiral N,N′‐dioxide‐zinc(II) complex as a catalyst. This method functions well for a variety of terminal alkynes as well as cyclic enol silyl ethers, with good to excellent enantioselectivity (up to 97 % ee). This is also the first successful example for the catalytic enantioselective [2+2] cycloaddition of internal alkynes with cyclic enol silyl ethers to give fully substituted cyclobutenes. Meanwhile, the desired cyclobutene product can easily be transformed into fused cyclobutane derivatives.  相似文献   

15.
A catalytic, versatile and atom‐economical C−H functionalization process that provides a wide variety of cyclic systems featuring methyl‐substituted quaternary stereocenters is described. The method relies on the use of a cationic IrI–bisphosphine catalyst, which promotes a carboxamide‐assisted activation of an olefinic C(sp2)−H bond followed by exo‐cyclization to a tethered 1,1‐disubstituted alkene. The extension of the method to aromatic and heteroaromatic C−H bonds, as well as developments on an enantioselective variant, are also described.  相似文献   

16.
The chloro alcohols 4 – 6 derived from TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolan‐4,5‐dimethanols) are used to prepare corresponding sulfanyl alcohols, ethers, and amines (Scheme 1 and Table 1). The dithiol analog of TADDOL and derivatives thereof, 45 – 49 , were also synthesized. The crystal structures of 16 representatives of this series of compounds are reported (Figs. 13 and Scheme 2). The thiols were employed in Cu‐catalyzed enantioselective conjugate additions of Grignard reagents to cyclic enones, with cycloheptenone giving the best results (er up to 94 : 6). The enantioselectivity reverses from Si‐addition with the sulfanyl alcohol to Re‐addition with the alkoxy or dimethylamino thiols (Table 4). CuI‐Thiolates, 50 – 53 , could be isolated in up to 84% yield (Scheme 2) and were shown to have tetranuclear structures in the gas phase (by ESI‐MS), in solution (CH2Cl2, THF; by vapor‐pressure osmometry and by NMR pulsed‐gradient diffusion measurements; Table 5), and in the solid state (X‐ray crystal structures in Scheme 2). The Cu complex 50 of the sulfanyl alcohol is stable in air and in the presence of weak aqueous acid, and it is a highly active catalyst (0.5 mol‐%) for the 1,4‐additions, leading to the same enantio‐ and regioselectivities observed with the in situ generated catalyst (6.5 mol‐%; Scheme 3). Since the reaction mixtures contain additional metal salts (MgX2, LiX) it is not possible at this stage, to propose a mechanistic model for the conjugate additions.  相似文献   

17.
A chiral bidentate phosphoramidite (5a) was synthesized from Shibasaki’s linked-(R)-BINOL and P(NMe2)3 as a new ligand for rhodium(I)-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds. The effects of 5a and Feringa’s monodentate phosphoramidite (4, R1, R2 = Et) on the yields and enantioselectivities were fully investigated. The reaction was significantly accelerated in the presence of a base such as KOH and Et3N, allowing the reaction to be completed at the lower temperatures than 50 °C. The addition to cyclic enones such as 2-cyclopentenone, 2-cyclohexenone and 2-cycloheptenone at 50 °C in the presence of an [Rh(coe)2Cl]2-4 (R1, R2 = Et) complex resulted in enantioselectivities up to 98%, though it was less effective for acyclic enones (0–70% ee). On the other hand, a complex between [Rh(nbd)2]BF4 and 5a completed the addition to cyclic enones within 2 h at room temperature in the presence of Et3N with 86–99% yields and 96–99.8% ee. This catalyst was also effective for acyclic enones, resulting in 62–98% yields and 66–94% ee. The 1,4-additions of arylboronic acids to unsaturated lactones and acyclic esters with rhodium(I)-phosphoramidites complexes were also investigated.  相似文献   

18.
Rhodium‐catalyzed enantioselective desymmetrizing intramolecular hydrosilylation of symmetrically disubstituted hydrosilanes is described. The original axially chiral phenanthroline ligand (S)‐BinThro (Binol‐derived phenanthroline) was found to work as an effective chiral catalyst for this transformation. A chiral silicon stereogenic center is one of the chiral motifs gaining much attention in asymmetric syntheses and the present protocol provides cyclic five‐membered organosilanes incorporating chiral silicon centers with high enantioselectivities (up to 91 % ee). The putative active RhI catalyst takes the form of an N,N,O‐tridentate coordination complex, as determined by several complementary experiments.  相似文献   

19.
The rapid development of enantioselective C?H activation reactions has created a demand for new types of catalysts. Herein, we report the synthesis of a novel planar‐chiral rhodium catalyst [(C5H2tBu2CH2tBu)RhI2]2 in two steps from commercially available [(cod)RhCl]2 and tert‐butylacetylene. Pure enantiomers of the catalyst were obtained through separation of its diastereomeric adducts with natural (S)‐proline. The catalyst promoted enantioselective reactions of aryl hydroxamic acids with strained alkenes to give dihydroisoquinolones in high yields (up to 97 %) and with good stereoselectivity (up to 95 % ee).  相似文献   

20.
Chiral catalysts tolerating photochemical reactions are in great demand for the vast development of visible‐light‐induced asymmetric synthesis. Now, chiral octahedral complexes based on earth‐abundant metal and chiral N4 ligands are reported. One well‐defined chiral CoII‐complex is shown to be an efficient catalyst in the visible‐light‐induced conjugated addition of enones by alkyl and acyl radicals, providing synthetically valued chiral ketones and 1,4‐dicarbonyls in 47–>99 % yields with up to 97:3 e.r.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号