首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linear tetracarboxylic acid ligand, H4L, with a pendent amine moiety solvothermally forms two isostructural metal–organic frameworks (MOFs) LM (M=ZnII, CuII). Framework LCu can also be obtained from LZn by post‐ synthetic metathesis without losing crystallinity. Compared with LZn , the LCu framework exhibits high thermal stability and allows removal of guest solvent and metal‐bound water molecules to afford the highly porous, LCu′ . At 77 K, LCu′ absorbs 2.57 wt % of H2 at 1 bar, which increases significantly to 4.67 wt % at 36 bar. The framework absorbs substantially high amounts of methane (238.38 cm3 g?1, 17.03 wt %) at 303 K and 60 bar. The CH4 absorption at 303 K gives a total volumetric capacity of 166 cm3 (STP) cm?3 at 35 bar (223.25 cm3 g?1, 15.95 wt %). Interestingly, the NH2 groups in the linker, which decorate the channel surface, allow a remarkable 39.0 wt % of CO2 to be absorbed at 1 bar and 273 K, which comes within the dominion of the most famous MOFs for CO2 absorption. Also, LCu′ shows pronounced selectivity for CO2 absorption over CH4, N2, and H2 at 273 K. The absorbed CO2 can be converted to value‐added cyclic carbonates under relatively mild reaction conditions (20 bar, 120 °C). Finally, LCu′ is found to be an excellent heterogeneous catalyst in regioselective 1,3‐dipolar cycloaddition reactions (“click” reactions) and provides an efficient, economic route for the one‐pot synthesis of structurally divergent propargylamines through three‐component coupling of alkynes, amines, and aldehydes.  相似文献   

2.
Heterostructural metal/metal oxides are the very promising substituents of noble‐metal catalysts; however, generation and further stabilization of accessible metal/metal oxide heterojunctions are very difficult. A strategy to encapsulate and stabilize Cu/Cu2O nanojunctions in porous organic frameworks in situ is developed by tuning the acrylate contents in copper‐based metal–organic frameworks (Cu‐MOFs) and the pyrolytic conditions. The acrylate groups play important roles on improving the polymerization degree of organic frameworks and generating and stabilizing highly dispersed and accessible Cu/Cu2O heteronanojunctions. As a result, pyrolysis of the MOF ZJU‐199, consisting of three acrylates per ligand, generates abundant heterostructural Cu/Cu2O discrete domains inside porous organic matrices at 350 °C, demonstrating excellent catalytic properties in liquid‐phase hydrogenation of furfural into furfuryl alcohol, which are much superior to the non‐noble metal‐based catalysts.  相似文献   

3.
《中国化学》2017,35(8):1289-1293
We have successfully designed and synthesized a new tetracarboxylic linker, which constructed its first three‐dimensional microporous metal‐organic framework (MOF ), [Cu2(DDPD )(H2O )2]•Gx ( ZJU ‐13 , H4DDPD =5,5'‐(2,6‐dihydroxynaphthalene‐1,5‐diyl)diisophthalic acid, ZJU =Zhejiang University, G = guest molecules) via solvothermal reaction. Due to open Cu2+ sites and optimized pore size, the activated ZJU ‐13a displays high separation selectivity for C2H2 /CH4 of 74 and C2H2 /CO2 of 12.5 at low pressure by using Ideal Adsorbed Solution Theory (IAST ) simulation at room temperature.  相似文献   

4.
The synthesis of stable porous materials with appropriate pore size and shape for desired applications remains challenging. In this work a combined experimental/computational approach has been undertaken to tune the stability under various conditions and the adsorption behavior of a series of MOFs by subtle control of both the nature of the metal center (Co2+, Cu2+, and Zn2+) and the pore surface by the functionalization of the organic linkers with amido and N‐oxide groups. In this context, six isoreticular MOFs based on T‐shaped ligands and paddle‐wheel units with ScD0.33 topology have been synthesized. Their stabilities have been systematically investigated along with their ability to adsorb a wide range of gases (N2, CO2, CH4, CO, H2, light hydrocarbons (C1–C4)) and vapors (alcohols and water). This study has revealed that the MOF frameworks based on Cu2+ are more stable than their Co2+ and Zn2+ analogues, and that the N‐oxide ligand endows the MOFs with a higher affinity for CO2 leading to excellent selectivity for this gas over other species.  相似文献   

5.
The porous framework [Cu2(H2O)2L] ? 4 H2O ? 2 DMA (H4L=oxalylbis(azanediyl)diisophthalic acid; DMA=N,N‐dimethylacetamide), denoted NOTT‐125, is formed by connection of {Cu2(RCOO)4} paddlewheels with the isophthalate linkers in L4?. A single crystal structure determination reveals that NOTT‐125 crystallises in monoclinic unit cell with a=27.9161(6), b=18.6627(4) and c=32.3643(8) Å, β=112.655(3)°, space group P21/c. The structure of this material shows fof topology, which can be viewed as the packing of two types of cages (cage A and cage B) in three‐dimensional space. Cage A is constructed from twelve {Cu2(OOCR)4} paddlewheels and six linkers to form an ellipsoid‐shaped cavity approximately 24.0 Å along its long axis and 9.6 Å across its central diameter. Cage B consists of six {Cu2(OOCR)4} units and twelve linkers and has a spherical diameter of 12.7 Å taking into account the van der Waals radii of the atoms. NOTT‐125 incorporates oxamide functionality within the pore walls, and this, combined with high porosity in desolvated NOTT‐125a, is responsible for excellent CO2 uptake (40.1 wt % at 273 K and 1 bar) and selectivity for CO2 over CH4 or N2. Grand canonical Monte Carlo (GCMC) simulations show excellent agreement with the experimental gas isotherm data, and a computational study of the specific interactions and binding energies of both CO2 and CH4 with the linkers in NOTT‐125 reveals a set of strong interactions between CO2 and the oxamide motif that are not possible with a single amide.  相似文献   

6.
Hierarchical porous materials are promising for catalyst, separation and sorption applications. A ligand‐assisted etching process is developed for template‐free synthesis of hierarchical mesoporous MOFs as single crystals and well‐intergrown membranes at 40 °C. At 223 K, the hierarchical porous structures significantly improve the CO2 capture capacity of HKUST‐1 by more than 44 % at pressures up to 20 kPa and 13 % at 100 kPa. Even at 323 K, the enhancement of CO2 uptake is above 25 % at pressures up to 20 kPa and 7 % at 100 kPa. The mesoporous structures not only enhance the CO2 uptake capacity but also improve the diffusion and mass transportation of CO2. Similarly, well‐intergrown mesoporous HKUST‐1 membranes are synthesized, which hold the potential for film‐like porous devices. Mesoporous MOF‐5 crystals are also obtained by a similar ligand‐assisted etching process. This may provide a facile way to prepare hierarchical porous MOF single crystals and membranes for wide‐ranging applications.  相似文献   

7.
The porphyrin boxes ( PB‐1 and PB‐2 ), which are rationally designed porous organic cages with a large cavity using well‐defined and rigid 3‐connected triangular and 4‐connected square shaped building units are reported. PB‐1 has a cavity as large as 1.95 nm in diameter and shows high chemical stability in a broad pH range (4.8 to 13) in aqueous media. The crystalline nature as well as cavity structure of the shape‐persistent organic cage crystals were intact even after complete removal of guest molecules, leading to one of the highest surface areas (1370 m2g?1) among the known porous organic molecular solids. The size of the cavities and windows of the porous organic cages can be modulated using different sized building units while maintaining the topology of the cages, as illustrated with PB‐2 . Interestingly, PB‐2 crystals showed unusual N2 sorption isotherms as well as high selectivity for CO2 over N2 and CH4 (201 and 47.9, respectively at 273 K at 1 bar).  相似文献   

8.
The loading of a metal‐organic framework (MOF), [Cu3(btc)2xH2O] HKUST‐1, with europium β‐diketonate complexes is studied with the goal to using the porous molecular framework as a photonic antenna. Whereas loading of HKUST‐1 powder particles produced via the conventional solvothermal synthesis method was strongly hindered, for HKUST‐1 SURMOFs, thin MOF films fabricated using the liquid phase epitaxy method, a high filling factor can be achieved. The optical properties of the HKUST‐1‐MOFs before and after loading were analysed with the aid of luminescence spectroscopy. Careful analysis of the absorption spectra reveals the presence of an effective energy transfer between the HKUST‐1 framework and the Eu3+ centers.  相似文献   

9.
Sequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA‐SBA‐15 (amine‐modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST‐1 and Mg‐MOF‐74/Mg‐dobdc (metal–organic frameworks, MOFs); SIFSIX‐3‐Ni , (hybrid ultramicroporous material). Temperature‐programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf‐life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2‐rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance.  相似文献   

10.
Four isostructural metal–organic frameworks (MOFs) with various functionalized pore surfaces were synthesized from a series of diisophthalate ligands. These MOFs exhibit a new network topology of {4.64.8}2{42.64}{64.82}2{66}. Hydrogen uptake as high as 2.67 wt % at 77 K/1 bar and CO2 uptake of 15.4 wt % at 297 K/1 bar have been observed for PCN‐308, which contains ? CF3 groups. The isostructural series of MOFs also showed reasonable adsorption selectivity of CO2 over CH4 and N2.  相似文献   

11.
Two metalloporphyrin octacarboxylates were used to link copper(II) nodes for the formation of two novel porous mixed‐metal metal–organic frameworks (M′MOFs) containing nanopore cages (2.1 nm in diameter) or nanotubular channels (1.5 nm in diameter). The highly active Cu2+ sites on the nanotubular surfaces of the stable porous M′MOF ZJU‐22 , stabilized by three‐connected nets, lead to the superior catalytic activity for the cross‐dehydrogenative coupling (CDC) reaction.  相似文献   

12.
Unusual CO2 storage in water‐saturated MOFs was investigated by combining experiment and simulation. It was found that the micropores of HKUST‐1 saturated with water provide an environment that is thermodynamically and kinetically favorable for CO2 capture, but not for N2 and H2 capture. We expect that this phenomenon have potential to be used for successful separation of CO2 from versatile flue streams and pre‐combustion gas.  相似文献   

13.
Metal–organic frameworks (MOFs) are crystalline porous materials formed from bi‐ or multipodal organic linkers and transition‐metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post‐synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand‐to‐metal charge‐separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co‐catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction.  相似文献   

14.
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO2 affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO2 are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO2 uptake capacity and CO2/N2, CO2/CH4 separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.  相似文献   

15.
Highly flexible, TpPa‐1@PBI‐BuI and TpBD@PBI‐BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced.  相似文献   

16.
We demonstrate herein an all‐optical switch based on stimuli‐responsive and photochromic‐free metal–organic framework (HKUST‐1). Ultrafast near‐infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s?1 rate due to dehydration and concomitant shrinking of the structure‐forming [Cu2C4O8] cages of HKUST‐1. Such light‐induced switching enables the remote modulation of intensities of photoluminescence of single crystals of HKUST‐1 as well visible radiation passing through the crystal by 2 order of magnitude. This opens up the possibility of utilyzing stimuli‐responsive MOFs for all‐optical data processing devices.  相似文献   

17.
In order to explore the in uence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of organic linkers and three types of functional groups (i.e. -F, -NH2, -CH3) were used to construct 36 MOFs of pcu topology based on copper paddlewheel. Grand canonical Monte Carlo simulations were performed in this work to evaluate the separation performance of MOFs at low (vacuum swing adsorption) and high (pressure swing adsorption) pressures, respectively. Simulation results demonstrated that CO2 working capacity of the unfunctionalized MOFs generally exhibits pore-size dependence at 1 bar, which increases with the decrease in pore sizes. It was also found that -NH2 functionalized MOFs exhibit the highest CO2 uptake due to the enhanced Coulombic interactions between the polar -NH2 groups and the quadrupole moment of CO2 molecules, which is followed by -CH3 and -F functionalized ones. Moreover, positioning the functional groups -NH2 and -CH3 at sites far from the metal node (site b) exhibits more significant enhancement on CO2/CH4 separation performance compared to that adjacent to the metal node (site a).  相似文献   

18.
Solvothermal reaction of H4L (L=biphenyl‐3,3′,5,5′‐tetracarboxylate) and Bi(NO3)3 ? (H2O)5 in a mixture of DMF/MeCN/H2O in the presence of piperazine and nitric acid at 100 °C for 10 h affords the solvated metal–organic polymer [Bi2(L)1.5(H2O)2] ? (DMF)3.5 ? (H2O)3 (NOTT‐220‐solv). A single crystal X‐ray structure determination confirms that it crystallises in space group P2/c and has a neutral and non‐interpenetrated structure comprising binuclear {Bi2} centres bridged by tetracarboxylate ligands. NOTT‐220‐solv shows a 3,6‐connected network having a framework topology with a {4 ? 62}2{42 ? 65 ? 88}{62 ? 8} point symbol. The desolvated material NOTT‐220a shows exceptionally high adsorption uptakes for CH4 and CO2 on a volumetric basis at moderate pressures and temperatures with a CO2 uptake of 553 g L?1 (20 bar, 293 K) with a saturation uptake of 688 g L?1 (1 bar, 195 K). The corresponding CH4 uptake was measured as 165 V(STP)/V (20 bar, 293 K) and 189 V(STP/V) (35 bar, 293 K) with a maximum CH4 uptake for NOTT‐220a recorded at 20 bar and 195 K to be 287 V(STP)/V, while H2 uptake of NOTT‐220a at 20 bar, 77 K is 42 g L?1. These gas uptakes have been modelled by grand canonical Monte Carlo (GCMC) and density functional theory (DFT) calculations, which confirm the experimental data and give insights into the nature of the binding sites of CH4 and CO2 in this porous hybrid material.  相似文献   

19.
The integration of metal/metal oxide nanoparticles (NPs) into metal–organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection–sacrifice (TPS) method to encapsulate metastable NPs such as Cu2O into MOFs. SiO2 was used as both a protective shell for Cu2O nanocubes and a sacrificial template for forming a yolk–shell structure. The obtained Cu2O@ZIF‐8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4‐nitrophenol with high activity. This is the first report of a Cu2O@MOF‐type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials.  相似文献   

20.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号