首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《化学:亚洲杂志》2017,12(16):2008-2028
T he use of nonfluorescent azo dyes as dark quenchers in activatable optical bioprobes based on the Förster resonance energy transfer (FRET) mechanism and designed to target a wide range of enzymes has been established for over two decades. The key value of the azo moiety (−N=N−) to act as an efficient “ON–OFF” switch of fluorescence once introduced within the core structure of conventional organic‐based fluorophores (mainly fluorescent aniline derivatives) has recently been exploited in the development of alternative reaction‐based small‐molecule probes based on the “profluorescence” concept. These unprecedented “azobenzene‐caged” fluorophores are valuable tools for the detection of a wide range of reactive (bio)analytes. This review highlights the most recent and relevant advances made in the design and biosensing/bioimaging applications of azo‐based fluorogenic probes. Emphasis is also placed on relevant achievements in the synthesis of bioconjugatable/biocompatible azo dyes used as starting building blocks in the rational and rapid construction of these fluorescent chemodosimeters. Finally, a brief glimpse of possible future biomedical applications (theranostics) of these “smart” azobenzene‐based molecular systems is presented.  相似文献   

4.
The design of high‐affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco‐gold nanoparticles (glyco‐AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco‐AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities. We demonstrate that AuNPs functionalized with mixed thiolated ligands comprising glycan (70 mol %) and an amphiphilic linker (30 mol %) provide long‐term stability in solutions containing high concentrations of salts and proteins, with no evidence of nonspecific protein adsorption. These highly stable glyco‐AuNPs enable the detection of model plant lectins such as Concanavalin A, wheat germ agglutinin, and Ricinus communis Agglutinin 120, at subnanomolar and low picomolar levels through UV/Vis spectrophotometry and dynamic light scattering, respectively. Moreover, we develop in situ glyco‐AuNPs‐based agglutination on an oriented immobilized antibody microarray, which permits highly sensitive lectin sensing with the naked eye. In addition, this microarray is capable of detecting lectins presented individually, in other environmental settings, or in a mixture of samples. These results indicate that glyconanoparticles represent a versatile and highly sensitive method for detecting and probing the binding of glycan to proteins, with significant implications for the construction of a variety of platforms for the development of glyconanoparticle‐based biosensors.  相似文献   

5.
Efficient hydrogen evolution reaction (HER) through effective and inexpensive electrocatalysts is a valuable approach for clean and renewable energy systems. Here, single‐shell carbon‐encapsulated iron nanoparticles (SCEINs) decorated on single‐walled carbon nanotubes (SWNTs) are introduced as a novel highly active and durable non‐noble‐metal catalyst for the HER. This catalyst exhibits catalytic properties superior to previously studied nonprecious materials and comparable to those of platinum. The SCEIN/SWNT is synthesized by a novel fast and low‐cost aerosol chemical vapor deposition method in a one‐step synthesis. In SCEINs the single carbon layer does not prevent desired access of the reactants to the vicinity of the iron nanoparticles but protects the active metallic core from oxidation. This finding opens new avenues for utilizing active transition metals such as iron in a wide range of applications.  相似文献   

6.
Organic nanoparticles consisting of 3,3′‐diethylthiacyanine (TC) and ethidium (ETD) dyes are synthesized by ion‐association between the cationic dye mixture (10 % ETD doping) and the tetrakis(4‐fluorophenyl)borate (TFPB) anion, in the presence of a neutral stabilizing polymer, in aqueous solution. Doping with ETD makes the particle size smaller than without doping. Size tuning can also be conducted by varying the molar ratio (ρ) of the loaded anion to the cationic dyes. The fluorescence spectrum of TC shows good overlap with the absorption of ETD in the 450–600 nm wavelength region, so efficient excitation‐energy transfer from TC (donor) to ETD (acceptor) is observed, yielding organic nanoparticles whose fluorescence colours are tunable. Upon ETD doping, the emission colour changes significantly from greenish‐blue to reddish or whitish. This change is mainly dependent on ρ. For the doped nanoparticle sample with ρ=1, the intensity of fluorescence ascribed to ETD is ~150‐fold higher than that from pure ETD nanoparticles (efficient antenna effect). Non‐radiative Förster resonance‐energy transfer (FRET) is the dominant mechanism for the ETD fluorescence enhancement. The organic nanoparticles of a binary dye system fabricated by the ion‐association method act as efficient light‐harvesting antennae, which are capable of transferring light energy to the dopant acceptors in very close proximity to the donors, and can have multi‐wavelength emission colours with high fluorescence quantum yields.  相似文献   

7.
A sense of cell‐being : Single‐walled carbon nanotubes (SWNTs) are functionalized with bioactive monosaccharides to enable their use as biosensors. The glycosylated nanotube network is biocompatible and can interface with living cells (see scheme) to electronically detect biomolecular release with high temporal resolution and high sensitivity.

  相似文献   


8.
Electrocatalytic behavior of diethylaminoethanethiol (DEAET) at nickel nanoparticle‐electrodecorated single‐walled carbon nanotube (SWCNT‐Ni) platform is presented. We demonstrate that the electrocatalytic response is governed by adsorption‐controlled kinetics and that adsorptive stripping voltammetry (AdsSV) represents a viable analytical voltammetry for the sensitive detection of this hydrolysis product of a V‐type nerve agent.  相似文献   

9.
《化学:亚洲杂志》2017,12(15):1944-1951
Exploring suitable electrode materials is a fundamental step toward developing Al batteries with enhanced performance. In this work, we explore using density functional theory calculations the feasibility of single‐walled carbon nanotubes (SWNTs) as a cathode material for Al batteries. Carbon nanotubes with hollow structures and large surface area are able to overcome the difficulty of activating the opening of interlayer spaces as observed in graphite electrode during the first intercalation cycle. Our results show that AlCl4 binds strongly with the SWNT to result in an energetically and thermally stable AlCl4‐adsorbed SWNT system. Diffusion calculations show that the SWNT system allows ultrafast diffusion of AlCl4 with a more favorable inner surface diffusion than outer surface diffusion. Our charge‐density difference and Bader atomic charge analysis confirm the oxidation of SWNT upon adsorption of AlCl4, which shows a similar behavior to the previously studied graphite cathode. The average open‐circuit voltage and AlCl4 storage capacity increases with increasing SWNT diameter and can be as high as 1.96 V and 275 mA h g−1 in (25,25) SWNT relative to graphite (70 mA h g−1). All of these properties show that SWNTs are a potential cathode material for high‐performance Al batteries and should be explored further.  相似文献   

10.
Carbon‐fiber microelectrodes (CFEs) are the primary electroanalytical tool in single‐cell exocytosis and in vivo studies. Here we report a new study on the kinetic properties of electrolyte‐filled CFEs in single‐cell measurements and demonstrate that the addition of outer sphere redox species, such as Fe(CN)63? and Ru(NH3)63+, in the backfill electrolyte solution can greatly enhance the kinetic response of CFEs. We show that at 750 mV, a voltage normally applied for detection of dopamine, the presence of fast outer sphere redox species in the backfilling solution significantly enhances the kinetic response of CFEs toward fast dopamine detection at single PC12 cells. Moreover, we also demonstrate that the use of Fe(CN)63? in the backfilling solution has enabled direct measurement of dopamine at applied voltages as low as 200 mV. This kinetic enhancement is believed to be due to faster electron‐transfer kinetics on the coupling pole as compared to the sluggish reduction of oxygen. We anticipate that such redox‐filled CFE ultramicroelectrodes will find many useful applications in single cell exocytosis and in vivo sensing.  相似文献   

11.
The field of nanopore sensing at the single‐molecular level is in a “boom” period. Such nanopores, which are either composed of biological materials or are fabricated from solid‐state substrates, offer a unique confined space that is compatible with the single‐molecular scale. Under the influence of an electrical field, such single‐biomolecular interfaces can read single‐molecular information and, if appropriately fine‐tuned, each molecule plays its individual ionic rhythm to compose a “molecular symphony”. Over the past few decades, many research groups have worked on nanopore‐based single‐molecular sensors for a range of thrilling chemical and clinical applications. Furthermore, for the past decade, we have also focused on nanopore‐based sensors. In this Minireview, we summarize the recent developments in fundamental research and applications in this area, along with data algorithms and advances in hardware, which act as infrastructure for the electrochemical analysis.  相似文献   

12.
Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single‐molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single‐molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single‐molecule sensors, the measurement challenges in making single‐molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored.  相似文献   

13.
Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)‐based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single‐walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein‐based dye (FAM)‐labeled peptide (FAM‐pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM‐pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM .  相似文献   

14.
The realization of common materials transformations in nanocrystalline systems is fostering the development of novel nanostructures and allowing a deep look into the atomistic mechanisms involved. Galvanic corrosion is one such transformation. We studied galvanic replacement within individual metal nanoparticles by using a combination of plasmonic spectroscopy and scanning transmission electron microscopy. Single‐nanoparticle reaction trajectories showed that a Ag nanoparticle exposed to Au3+ makes an abrupt transition into a nanocage structure. The transition is limited by a critical structural event, which we identified by electron microscopy to comprise the formation of a nanosized void. Trajectories also revealed a surprisingly strong nonlinearity of the reaction kinetics, which we explain by a model involving the critical coalescence of vacancies into a growing void. The critical void size for galvanic exchange to spontaneously proceed was found to be 20 atomic vacancies.  相似文献   

15.
16.
17.
We have introduced a new ABA‐type amphiphilic block copolymer consisting of functional oligourethane hydrophobic blocks and two polyethylene glycol (PEG) hydrophilic blocks. The polymer was synthesized in a single step by step‐growth polymerization between two monomers, namely tetraphenylethylene (TPE)‐diol and hexamehylene di‐isocyanate in the presence of a monofunctional impurity PEG‐2000. The polymer exhibits facile self‐assembly in water by synergistic effects of H‐bonding and π–π interaction among the oligourethane core, leading to the formation of robust nanoparticles with remarkable aggregation‐induced emission (AIE). These nanoparticles show very low critical aggregation concentration, stability over a large pH window, and excellent biocompatibility as revealed by an MTT assay. Cellular imaging with cancer cells showed facile cellular uptake and, more importantly, retention of AIE in cellular milieu for long times, which was successfully utilized for long‐term cancer cell tracking.  相似文献   

18.
In this paper, the use of tyrosinase (Ty) from Streptomyces antibioticus, labeled with a fluorescent tag, in combination with soluble quinoprotein (PQQ‐containing) glucose dehydrogenase (s‐GDH) to measure trace amounts of phenols is explored. Proof of concept is provided by a series of experiments, which show a clear quantitative dependence of the response on the phenol concentration. One of the advantages of the detection system is that apart from a standard fluorimeter no further instrumentation is required.  相似文献   

19.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号